APJ ABDULKALAM TECHNOLOGICAL UNIVERSIT **08 PALAKKAD CLUSTER**

(Pages: 2)

Name: Reg. No:

THIRD SEMESTER M.TECH. DEGREE EXAMINATION DECEMBER 2021

Branch: Electrical and Electronics Engineering

08EE7221(B) DESIGN OF POWER ELECTRONICS SYSTEM

(Common to PE)

Time: 3 hours

Q. No.

Q. P. Code: PE0821321B-I

Answer all six questions.

Modules 1 to 6: Part 'a' of each question is compulsory and answer either part 'b' or part 'c' of each question.

What is the need for electrical isolation in drive circuits. 1.a

Answer b or c

Module 1

Explain the design procedure for cascade drive circuits for normally on power 6 b devices with the help of neat diagram.

Explain the design procedure for dc coupled drive circuits with unipolar output 6 С with the help of neat diagram.

Q. No.

Module 2

Marks

3

6

6

2.a SCR is operated with a supply voltage of 400V. The dv/dt is 500V/us and di/dt is 20A/us. Calculate the value of snubber circuit parameters and inductance for a damping ratio of 0.5.

Answer b or c

b Discuss the design procedure for a turn-off snubber circuit for transistor.

Design the values of di/dt inductor and RC snubber components for the SCR C working in a 230V system. Given di/dt rating is 90A/us and dv/dt rating is 200V/us. Effective series resistance is 1.5ohm.Take the damping ratio as 0.6.

Q. No.	Module 3	Marks
3.a	What are the factors to be considered while designing a snubber circuit for	3
	GTO	

Answer b or c

Discuss the design procedure for a turn-off snubber circuit for GTO. b

6

1

Max. Marks: 60

Specialization: Power Electronics

Marks

3

c Discuss the steps for the design of an overvoltage snubber.

Module 4

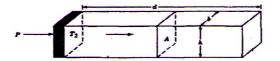
3

6

6

4.a Discuss about heat transfer by convection

Q. No.


b

5

1

Answer b or c

A transistor module is mounted on an aluminium plate having dimensions h=4cm, b=5cm and d=3mm. A temperature drop of 4°C is allowed from one 4×5 cm² surface to the other. Find the maximum power that can be generated in the module. Ignore any heat losses to the surrounding air.

c Find $R_{o.rad}$ for a cube of black oxidised aluminium 10 cm on a side. Assume T_s 6 =120°C and $T_a = 20°C$

Q. No.	Module 5	Marks	
5.a	Explain about the generation of electromagnetic interference in power converters	4	
Answer b or c			
b	What is stray capacitance? What is its effect on power electronic circuit?	8	
c	What is a common mode choke and explain its various modes of operation? Discuss about any one application of it.	8	
Q. No.	Module 6	Marks	
6.a	Explain in detail about the zero voltage switching in resonant converter.	4	
Answer b or c			
b	Derive the equation for current through inductor in series resonant circuit with capacitor parallel load.	8	
C	A series resonance inverter with parallel-loaded delivers a load power of $PL=1$ kW at a peak sinusoidal load voltage of $Vp = 330V$ and at resonance. The load resistance is $R = 10$ ohm. The resonant frequency is fo=20kHz. Determine (a) the dc input voltage V_s (b) the frequency ratio u if it is required to reduce the load power to 250 W by frequency control (c) the inductor L and (d) the capacitor C.	8	