10000CH467122102

		A WA EDUCA	70
R	eg N	o.: Name:	THE T
		APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY	RUST
Seven	th Se	emester B.Tech Degree Regular and Supplementary Examination December 2021 (26	y 5 Sch
		TERUTHUSE .	
		Course Code: CH467	
		Course Name: PROCESS MODELING AND SIMULATION	
Max. Marks: 100 Durati			Hours
		PART A	
		Answer any two full questions, each carries 15 marks.	Marks
1	a)	Explain the classification of modelling techniques.	(8)
	b)	Develop model equations for a CSTR (continuous stirred-tank reactor) in which a	(7)
		component A reacts irreversibly and at a specific reaction rate k_I to form B and	
		component B reacts irreversibly to form C at a rate k_2 as a first order reactions.	
		Let the concentration of component A, Band C in the inflowing feed stream be	
		C_{AO},C_{BO} and C_{CO} (moles per unit volume) and in the reactor be C_AC_B and $C_{C.}$ Let	
		the inlet flow rate is Fo and outlet flow rate be F (volume/sec) and V be the	
		volume of tank.	
2	a)	What is modelling and what are the basic modelling principles?	(7)
	b)	Discuss the equations of state, chemical kinetics, transport equations and	(8)
		equilibrium.	
3	a)	What are the uses of mathematical modelling?	(8)
	b)	A stream of water flowing horizontally with a speed of 15 m/s pushes out of a	(7)
		tube of cross sectional area 1 m ² and hits at a vertical wall nearby. What is the	
		force exerted on the wall by the impact of water, assuming that it does not	
		rebound? Density of water = 1000Kg/m ³	
		PART B Answer any two full questions, each carries 20 marks.	
4	a)	Develop the model for batch distillation.	(10)
•	b)	Develop the model for mixing vessel with irreversible reaction.	(10)
	5)	20,010p the model for mixing vesser with ineversion reaction.	(10)

b) Develop the model for a continuous flow tank with level Z, inflow F1 outflow F2

Page 1 of 2

takes place with exit concentration C2, outflow F3 and volume V.

and concentration C1 which is connected to a CSTR where a first order reaction

a) Develop the model for enclosed vessel boiling

(10)

(10)

10000CH467122102

6	a)	Develop the model for hydraulic transients between reservoirs.	(10)
	b)	Develop the model of mixing vessel with a jacket supplying heat at a rate Q.	(10)
		• PART C	
		Answer any two full questions, each carries 15 marks.	
7	a)	Develop the model of Ideal binary distillation column.	(8)
	b)	Write an algorithm for the simulation of Gravity flow tank.	(7)
8	a)	Develop the model for jacketed tubular reactor with a unimolecular reaction	(8)
		taking place on the surface of catalyst bed	
	b)	Write an algorithm for the simulation of nonisothermal CSTR	(7)
9	a)	Develop the model for counter current liquid liquid heat exchanger.	(7)
	b)	Write an algorithm for the simulation of binary distillation column.	(8)

Page 2of 2