

10000ME409122002

Reg No .:

E

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY Seventh Semester B.Tech Degree Regular and Supplementary Examination December 2021 (2015 Scheme)

Course Code: ME409

Course Name: COMPRESSIBLE FLUID FLOW

	Max	Ma	arks: 100 Duration:	3 Hours
	iviux.		Use of Gas table is permitted. Assume suitable value for missing data	J Hours
			PART A	Manha
	1		Answer any three jull questions, each carries 10 marks.	Marks (10)
	י ר		A ist of size t 500 K has service subjective Determine	(10)
	2		A jet of air at 500 K has sonic velocity. Determine	(10)
			1) Velocity of sound at 500 K	
			ii)Velocity of sound at the stagnation conditions	
			iii)Maximum Velocity of jet	
			iv)Stagnation Enthalpy	
			v)Crocco Number	
			Take $\gamma = 1.4$ and R=287 J/kg-K for air.	
1	3 a	a)	A gas with $\gamma = 1.3$ flows through a nozzle. Determine the critical pressure ratio	(2)
			$\frac{P^*}{P_0}$	
	b)	A Nozzle in a wind tunnel gives a test section Mach Number of 2.5. Air enter	s (8)
			the nozzle from a large reservoir at 0.75 bar and 320 K. The cross sectional area	1
			of the throat is 1000cm ² . Determine the following for the tunnel for one	-
	-		dimensional isentropic flow:	
			i)pressure, temperature and velocities at throat and test sections	
			ii) Mass Flow rate	
	4		A certain Diffuser has area ratio 3:1. If air ($\gamma = 1.4$, R = 287 J/kg-K) enters the	e (10)
			diffuser with a Mach number of 0.8, pressure of 5 bar and a temperature of 60°C	,
			compute the exit Mach number, exit velocity, exit temperature, exit pressure and	ł
			percentage change in impulse function.	
			PART B	
			Answer any three full questions, each carries 10 marks.	
-	5 a	1)	Make a list of flow properties which i) increases, ii) Decreases, iii)Remains	s (4)

Page 1 of 3

constant across a normal shock

10000ME409122002

	b)	A gas ($\gamma = 1.4$, R = 287 J/kg-K) at a Mach Number of 2, static pressure of 0.9 bar	(6)
		and static temperature of 400 K, passes through a normal shock. Determine its	
		density after the shock. Compare this value with that attained in an isentropic	
		compression through the same pressure ratio.	
6	a)	Explain the significance of Rankine -Hugoniot relations.	(2)
	b)	Starting from adiabatic energy equation derive Prandtl-Meyer relation.	(8)
7		A gas (γ =1.4, R= 287 J/kg-K) at P ₁ = 1 bar, T ₁ = 400 K enters a 30 cm diameter	(10)
		duct at a Mach number of 3. A normal shock occurs at a Mach number of 2 and	
		exit Mach number is 1. If the mean value of friction factor is 0.005 determine:	
		i)Length of the duct upstream and downstream of the shock wave	
		ii)Mass flow rate of gas	
		iii)Change in entropy upstream of shock, across the shock and down stream of	
		shock	
8	a)	Write assumptions of Fanno flow	(4)
	b)	Dry air having a pressure of 0.35 MPa and 32 °C enters a long constant area duct	(6)
		with a velocity of 150 m/s. The pipe Diameter is 30 cm and the friction factor is	
		0.005. Calculate the maximum possible length for the Pipe	
		PART C	
-		Answer any four full questions, each carries 10 marks.	
9		The conditions of a gas in a combustor at entry are $P_1 = 0.343$ bar, $T_1 = 300$ K,	(10)
		and $C_1 = 56$ m/s. Determine Mach number, pressure, temperature and velocity at	
		the exit, if the increase in stagnation enthalpy of the gas between entry and exit	-1
		is 1172.5 kJ/kg (take $\gamma = 1.4$ and $C_p = 1.005$ kJ/kg.K).	
10	a)	Give two practical examples of Rayleigh flow	(2)
	b)	Prove that the Mach Number at the maximum entropy point on the Rayleigh line	(8)
		is 1.0	
11		Air at 300 K, 55 KPa and 70 m/s enters the combustion chamber in a gas	(10)
		turbine power plant. The air-fuel ratio is 32 and the calorific value of the fuel is	
		42 MJ/kg. Taking $\gamma = 1.4$ and R = 287 J/kg-K for the gas, determine:	
		a) The initial and final Mach numbers,	
		b)Final pressure, temperature and velocity of gas	
		c) percent stagnation pressure loss in the combustion chamber	
		d) The maximum stagnation temperature attainable	

Page 2 of 3

10000ME409122002

12	a)	Draw a Keil probe and write a short on it	
	b)	Explain the principle of interference of light in direct determination of the	(4)
		in a gaseous flow field	(6)
13		Explain about constant current and constant temperature Hot mine t	(10)
		with the aid of circuit diagrams	
14	a)	Explain the principle of Shadowgraph with the aid of a part di	
	b)	Sketch and explain the working of a Stagesting T	(4)
		a stagnation l'emperature probe	(6)

Page 3 of 3