

Reg No.:	Name:
	APJ ABDUL KALAMPTEEATTILE SOCIETY

Seventh Semester B.Tech Degree Regular and Supplementary Examination December 2021 (2015 Scheme)

Course Code: CE473 Course Name: Advanced Computational Techniques and Optimization Max. Marks: 100 **Duration: 3 Hours** PART A Answer any two full questions, each carries 15 marks. Marks 1 a) Determine the largest Eigen value and the corresponding Eigen vector of the matrix A= b) Solve the system of equations (7) $2x_1 + x_2 + x_3 = 10$ $3x_1 + 2x_2 + 3x_3 = 18$ $x_1 + 4x_2 + 9x_3 = 16$ using Gauss elimination method 2 a) Explain errors in numerical methods. (7) b) Solve the equations (8) 2x + y + 6z = 9,8x + 3y + 2z = 13, x + 5y + z = 7 by Gauss- Seidal Method.

x + 5y + z = 7 by Gauss- Seidal Method.

3 a) Explain the formulation of objective function and constraints

(8)

b) What are the general optimization procedures?

(7)

Page 1 of 3

10000CE473122004

PART B

Answer any two full questions, each carries 15 marks.

- 4 a) Evaluate $\int_0^6 \frac{1}{1+x^2} dx$ using Trapezoidal rule and Simpson's 1/3 rd rule. (7)
 - b) Fit a Power equation $y = ax^b$ to the following data (8)

	x	1 ************************************	2	3	4	5	6
-	y	2.98	4.26	5.21	6.1	6.8	7.5

- 5 a) Write the procedure of quadratic spline interpolations.
 - b) Use multiple linear regression to fit the following data. (7)

x_1	x ₂	у
0	0	5
2	1	10
2.5	2	9
1	3	0
4	6	3
7	2	27

6 a) Define the following

(6)

(8)

- i) The standard form of LPP
- ii) Artificial variable
- iii) Basic solution
- b) Use two phase method to

(9)

Minimize: z = x + y Subject to

$$2x + y \ge 4$$

$$x + 7y \ge 7$$

$$x, y \ge 0$$

Page 2 of 3

10000CE473122004

PART C

Answer any two full questions, each carries 20 marks.

- 7 a) Derive the Diagonal five point formula and standard five point formula (8)
 - b) Solve the Poisson equation $\nabla^2 u = 8x^2y^2$ for the square mesh u(x,y) = 0 on the (12) boundary and mesh length equal to $1.(0 \le x \le 3), (0 \le y \le 3)$
- 8 a) Using Crank Nicolson method, solve $u_t = u_{xx}$, 0 < x < 1, t > 0 subject to : (10) u(x,0) = 100x(1-x), u(0,t) = 0, u(1,t) = 0 for one time step. Take h = 1/4
 - b) Form the Taylor series for y(x), find y(0.1) correct to four decimal places if y(x) (10) satisfies $\frac{dy}{dx} = xy + 1$, y(0) = 1
- 9 a) Find the minimum of $f(x) = -1.5x + x^2$ by starting from (0,0) with an initial step of (10) 0.05 using
 - i) Fixed step size method
 - ii) accelerated step size method
 - b) Explain the steepest descent method (10)

Page 3 of 3