

08000CS207122001

Pages: 3

_		. November 1	
Reg 1	No.:	Name:APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY	
		Third Semester B.Tech Degree (S,FE) Examination January 2022 (2015 Scheme)	
		Time School B. Teen Begree (e.g. 2) Examination Charles (2012 Control Begree (e.g. 2)	
		Course Code: CS207	
		Course Name: Electronic Devices & Circuits	
Max.	. M	arks: 100 Duration: 3	Hours
		PART A	Mada
		Answer all questions, each carries 3 marks.	Marks
1		Describe the operation of biased clipper and combination clipper.	(3)
2		Draw drain characteristics of JFET and explain how JFET works as VVR.	(3)
3		Derive the condition for a good differentiator.	(3)
4		What are the different types of MOSFET based on mode of operation.	(3)
		PART B	
		Answer any two full questions, each carries 9 marks.	
5	a)	Design a loaded 5V Zener regulator for a load current of 50 mA. Input voltage is	(4)
		10 V dc. Assume that Zener knee current is 5 mA.	
	b)	Design a low voltage regulator circuit using IC 723 to give an output voltage of	(5)
		5V.	
6	a)	Describe the operation of transistorized series voltage regulator and also define	(5)
		load regulation in a voltage regulator.	
	b)	Draw & explain a circuit to generate an output voltage of , $V_o = 3 V_{in}$.	(4)
7	a)	A 1 KHz square wave is integrated using RC integrator first and then	(4)
		differentiated by RC differentiator. Draw the waveforms at	
		a) Output of Integrator	
		b) Output of differentiator.	
	b)		(5)

with transfer characteristics as shown in the following diagram.

08000CS207122001

PART C

Answer all questions, each carries 3 marks.

8		In a transistor circuit , load resistance is $5K\Omega$ and quiescent current is $2mA$.	(3)
		Determine the operating point when the battery voltage is Vcc= 12V.	
9		Differentiate Oscillator from Amplifier.	(3)
10		Describe the effect of cascading in gain and bandwidth of amplifier.	(3)
11		Which circuit is known as 'free running oscillator'? Why?	(3)
		PART D	
		Answer any two full questions, each carries 9 marks.	
12	a)	With necessary equations explain the design of potential divider biasing for a	(4)
		transistor in Common Emitter configuration.	-
	b)	Draw the circuit diagram of a bi-stable multivibrator using transistors and explain its working.	(5)
13	a)	Design an RC Coupled Amplifier using transistors with the following	(6)
		specifications:	
		Vcc = 12 V dc, Ic = 3 mA, hfe = 100, Lower cut off frequency = 100 Hz, Upper	
		cut off frequency = 100 KHz.	
	b)	Explain the working of a crystal oscillator with necessary diagrams.	(3)
14	a)	Draw the circuit diagram and explain the working of a common source MOSFET amplifier.	(4)
	b)	Draw the circuit diagram and explain the working of Wien bridge oscillator for an output frequency of 6 KHz.	(5)

08000CS207122001

PART E

Answer any four full	questions, each	carries 10 marks
	Total total	CUFFLES III marke

1	5 2	a) List important energifications CAD	
1	-	and important specifications of A/D or D/A Converters.	(4)
	t	 Design a Summing amplifier and subtractor circuit using OP-Amp for two inputs. 	(6)
1	6 a	Give the ideal characteristics of an OP-Amp. What are their typical values for IC741 OP-Amp.	(5)
	b	Draw the figure of an operational amplifier integrator and prove that the output is proportional to integral of the input.	(5)
17	(a)	Design a Wien bridge oscillator circuit using OP-Amp for a frequency of oscillation, 2KHz.	(5)
18	b)	and help of necessary figures, explain about fastest type ADC	(5)
	a)	Draw the block schematic of Successive Approximation type analog to digital converter and explain its working.	(5) (5)
	b)	Design an Astable Multivibrator using IC 555 for a frequency of 1 KHz and a duty cycle of 40%	(5)
19	a)	Realise an active first order high pass filters using OP-Amps for a lower cut off frequency of 3 KHz and a pass band gain of 3.	(5)
	b)	Design a regenerative comparator circuit with UTP= 2V and LTP= -3V. Assume input voltage is 10Vpp. Also mention Hysteresis window.	(5)
20	a)	Describe: (1) Slew rate, (2) CMRR, (3) Offset voltage (4) Offset current	(A)
	b)	Describe the working of a binary weighted D/A Converter with	(4) (6)