10000CS401122002

Reg No.:

A

Name:

Pages

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Seventh Semester B.Tech Degree Regular and Supplementary Examination December 2021 (2015 Scheme

Course Code: CS401 Course Name: COMPUTER GRAPHICS

Max. Ma	$\mathbf{r}\mathbf{K}\mathbf{s}$: 100)				Duration:	3 Hours
						PART A	
	-		1	Answe	r all q	uestions, each carries 4 marks.	Marks
1	Descr	ibe the	e work	cing o	f a si	mple random scan display system with suitable	(A)
	diagra	m.					(4)
2	For w	hat pu	rpose v	ve use	the ne	on-zero winding number rule? How is it used ?	
	Illustr	ate wit	th an e	xampl	e.		(4)
3	Raster	ize th	e line	segme	ent fr	om pixel coordinate (10, 12) to (15, 15) using	
	Breset	ham's	s line d	Irawin	a alao	rithm	(4)
4	What	do vo		lanatan	d has		
7	vv nat	uo yu	ou une	lerstan	a by	nomogeneous coordinate system? What is its	(4)
_	signifi	cance	(
5	Consid	ler a l	ine fro	om P1	to P2	and an arbitrary point P on the line. Prove that	
	after p	erform	ning s	ome ti	ranslat	tion the translated P is on the line between the	(4)
-	transla	tion's o	of P1 a	nd P2.			
6	Show	how p	olane e	equation	ons ar	e used to identify the position of spatial points	
	relativ	e to the	e plane	e surfa	ce of a	an object.	(4)
7	Disting	ruish H	etwee	n nara	llel an	d perspective projections	(\mathbf{A})
8	Evolai	n abou	t Orth	ogonal		a perspective projections.	(4)
0	Lapia				i proje	ctions and its types with examples.	(4)
9	2	1	2	3	2		
	3	2	2	1	2		
		2	2	-	5		
	1	3	5	4	3	- Anglein	
							(A)
	3	4	5	6	7		(4)
	2	2		-			2
	L L	2	D		6		

Given a simple image as shown above. Write its frequency table and draw the histogram.

6

10000CS401	12200	2
------------	-------	---

10		Explain the steps involved in edge detection.	(4)
		PART B	
		Answer any two full questions, each carries 9 marks.	
11	a)	With the help of a neat diagram explain the working of a Direct View Storage	(5)
		Tube display.	
-	b)	Write the difference between emissive and non-emissive flat panel displays with	(4)
	N.	suitable examples.	
12	a)	Derive the initial decision parameter of midpoint circle drawing algorithm.	(5)
۲	b)	Use mid-point circle drawing algorithm to plot a circle whose radius is 10 units	(4)
		and centre is at (20,10).	
13	a)	Explain the working of (i) Digital glove (ii) Light pen	(5)
	b)	Show how coherence property can be utilised in the calculation of intersection	(4)
		of edges with scan lines in scan line polygon filling algorithm?	(.)
		PART C	
		Answer any two full questions, each carries 9 marks.	
14	a)	Perform the following transformations on a line with end points A(10, 20) and	
		B(40, 30). Draw the result of each transformation. Apply the second	
		transformation on the result of first and third on the result of second	
		transformation.	(5)
		i) Scale the object two times in x-direction and three times in y-direction.	
•		ii) Rotate the object by 90° Anticlockwise about origin.	
		iii) Translate one unit in x-direction and two units in y-direction.	
	b)	Explain how Mid-point subdivision algorithm is used for clipping a line	(4)
		segment.	
15	a)		
			(6)

Illustrate the clipping of the polygon shown in figure against the rectangular clipping window using Sutherland Hodgeman algorithm. Draw the intermediate results also.

10000CS401122002

	b)	Explain the boundary representation and space partitioning representation	
	0)	schemes used for solid object representation.	(3)
16		Describe the store involved in cooling a 2D shipst with respect to a fixed wint	
10	a)	Describe the steps involved in scanng a 3D object with respect to a fixed point	(4)
		(xf, yf, zf). Write the composite transformation matrix.	
	b)	Given a clipping window A(10,-20), B(80,-20), C(80,20) and D(10,20).	
2.		Using Cohen Sutherland line clipping algorithm, clip the line segment joining	(5)
		the points $P(-20,10)$ and $Q(70,-20)$. Find the end points of the visible portion.	
,		PART D	
		Answer any two full questions, each carries 12 marks.	
17	a)	Explain in detail the scan line algorithm for visible surface detection by pointing	(8)
		out the data structures used in this algorithm.	(0)
	b)	Distinguish between Cavalier and Cabinet projections.	(4)
18	a)	With a neat block diagram explain the fundamental steps in image processing.	(7)
	b)	Consider the image segment and compute the length of the shortest 4-, 8- and	(5)
		m-path between p and q by considering two set of values for V:	
		(i) $V=\{0,1\}$ (ii) $V=\{1,2\}$. If a particular path does not exist explain the reason for	
		the above two cases of V.	
		(q) 1 1 2 3 0 2 2 1	

1

a) Derive a transformation matrix for oblique parallel projection. (6)
b) What do you understand by histogram equalization of an image? Illustrate with suitable example show how equalization is done by dividing the list. (6)

Page 3 of 3