Reg No .:_

9

1

APJ ABDUL KALAM TECHNOLOGICAL UNIVERS

Fifth Semester B.Tech Degree (S,FE) Examination January 2022

Course Code: MR301

£

Course Name: LINEAR CONTROL SYSTEMS

Max. Marks: 100 Duration		n: 3 Hours	
	(Graph sheet, Polar graph sheet, Semi-log graph sheet are to be provided)		
	PART A Answer all questions, each carries 5 marks.	Marks	
1	Derive the transfer function of RLC circuit.	(5)	
2	What are analogous systems? Give an example.	(5)	
3	Determine the unit step response of a first order system with closed loop transfer	(5)	
	function 1/(1+sT)?		
4	What are the advantages and limitations of Routh's criterion?	(5)	
5	What is Polar plot and write how to plot it on a polar graph?	(5)	
6	Define gain cross over frequency and phase cross over frequency.	(5)	
7	What is a PID controller? Obtain its Transfer function.	(5)	
8	What is a lag compensator? Draw its pole-zero plot.	(5)	

PART B

Answer any three questions, each carries 10 marks.

Convert the block diagram shown below to signal flow graph and find the transfer (10) function of the system?

Page 1 of 3

06000MR301122002

10 a) Obtain the transfer functions $\frac{X_1(s)}{U(s)}$ and $\frac{X_2(s)}{U(s)}$ of the mechanical system shown in figure

- 11 a) A unity feedback system has a forward transfer function G(s) = K/s(s+10). Determine (4) the gain 'K' so that the system will have a damping ratio of 0.5?
 - b) Find the minimum value of K, when input is r(t) = 1+6t, to get a steady state error (6) $e_{ss} < 0.5$ for a unity feedback system with forward transfer function

$$G(s) = \frac{K(2s+1)}{s(5s+1)(1+s^2)}$$

12 a) What is Routh stability criterion?

b) Determine the range of K for the stability of a unit feedback system whose open loop (7) transfer function is

$$G(s) = \frac{K}{s(s+1)(s+2)}$$

13 a) Sketch the root locus of a unity feedback control system with open loop transfer (10) function as

$$G(s) = \frac{K}{s(s+2)(s+4)}$$

PART C

Answer any two questions, each carries 15 marks. 14 a) Draw the bode plot and obtain the gain and phase cross over frequencies

$$G(s) = \frac{10}{s(1+0.4s)(1+0.1s)}$$

15 a) Sketch the polar plot of a unity feedback system whose open loop transfer function is (15) given below. Determine the phase margin and gain margin

$$G(s) = \frac{1}{s(1+s)(1+2s)}$$

Page 2 of 3

(10)

(3)

(15)

06000MR301122002

. 1

16	a)	Explain automatic traffic light control with necessary sketches.	(10)
	b)	Explain the need for cascade compensation in control system	(5)
17	a)	Design an automatic street light control system	(7)
	b)	Discuss briefly about PI, PID controllers and find transfer functions	(8)
		비행 이 이 것을 가장 이 것 같아. 이 것은 이 것은 것을 하는 것은 것은 것은 것을 위해 집에서 있는 것이 있는 것이 같아. 이 것은 것은 것은 것을 하는 것이 같아. 이 것은 것은 것은 것은 것을 하는 것이 없다. 것은	