03000EC363092002

Reg No.:	· ·	Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Fifth Semester B.Tech Degree (S,FE) Examination January 2022 (2015 Scheme)

Course Code: EC363 Course Name: OPTIMIZATION TECHNIQUES

Max. Marks: 100 Duration: 3 Hours

PART A Answer any two full questions, each carries 15 marks.

Marks

1	a)	Define convex and concave function. Determine whether the following function	(5)
		are convex or concave. (i) $f(x) = e^{x}$ ii) $f(x) = 8x^{2}$	

- b) State and prove the necessary and sufficient condition for the relative minimum (10) of a function of a single variable.
- 2 a) Solve using simplex method Maximise $Z=5x_1+3x_2$ subject to: $x_1+x_2 \le 2$, $5x_1+2x_2 \le 10$, $3x_1+8x_2 \le 12$, $x_1,x_2 \ge 0$.
 - b) Solve the following problem graphically. Maximise $Z = 60x_1 + 40x_2$ (7) subject to: $2x_1 + x_2 \le 60$, $x_1 \le 25$, $x_2 \le 35$, x_1 , $x_2 \ge 0$
- 3 a) Solve using Dual Simplex method : Minimise $Z=2x_1+2x_2$ subject to : $2x_1+4x_2 \ge 1$, $x_1+2x_2 \ge 1$, $2x_1+x_2 \ge 1$, x_1 , $x_2 \ge 0$ (8)
 - b) Find the extreme points of the function $f(x_1, x_2) = x_1^3 + x_2^3 + 2x_1^2 + 4x_2^2 + 6$. (7)

PART B Answer any two full questions, each carries 15 marks.

4 a) Find the initial basic feasible solution to the following transportation problem (8) using VAM method.

	Α	В	С	Supply
1	2	7	4	5
2	- 3	3	1	8
3	5	4	7	7
4	1	6	2	14
Demand	7	9	18	

Page 1 of 3

03000EC363092002

b) Find Basic Feasible Solution using North-West corner rule

(7)

	D1	DŽ	D3	D4	D5	a i
01	20	18	18	21	19	100
02	21	22	23	20	24	125
03	18	19	21	18	19	175
bj	60	80	85	105	70	

5 a) Solve the transportation problem using MODI method

(10)

W1	W2	W3	W4	Supply
190	300	500	100	70
700	300	400	600	90
400	100	600	200	180
50	80	70	140	
	190 700 400	190 300 700 300 400 100	190 300 500 700 300 400 400 100 600	190 300 500 100 700 300 400 600 400 100 600 200

b) Solve the following game by the principle of dominance

(5)

6 a) Find the minimum spanning tree to the following network by PRIM'S algorithm. (8)

b) Solve using Djikstra's shortest path algorithm taking node 1 to 7

(7)

03000EC363092002

PART C

Answer any two full questions, each carries 20 marks.

- Find the minimum of the function $f(x) = 0.65 \frac{0.75}{1+x^2} 0.65x \tan^{-1} \frac{1}{x} u \sin g$ Newton Raphson method with the starting point $x_1 = 0.1$. Use $\varepsilon = 0.01$ for checking the convergence.
 - b) Minimise $f(x_1, x_2) = x_1 x_2 + 2x_1^2 + x_2^2 + 2x_1x_2$ using Steepest Descent (10) method starting from the point $\begin{cases} 0 \\ 0 \end{cases}$.(Two Iterations)
 - 8 a) Minimise $f(x) = x^2 + \frac{54}{x}$ in the interval [0,5] by the Fibonacci Search Method. (Choose n = 3).
 - b) Define the following terms with suitable applications: (10)(i) Cross over (ii) Mutation
- 9 a) Explain the working principle used in Genetic Algorithm. (10)
 - b) Derive a fitness function in Genetic algorithms (10)
