06000EC301122003

Reg No.:

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVER

Fifth Semester B.Tech Degree (S,FE) Examination January 2022 (2)

Course Code: EC301

Course Name: DIGITAL SIGNAL PROCESSING

Max: Marks: 100 Duration: 3 Hour			
		PART A Answer any two full questions, each carries 15 marks.	Marks
1	a)	Write down the equation for N point DFT and explain each term	(4)
	b)	Find N point DFT of unit impulse $\delta(n)$	(4)
	c)	Find 4 point DFT of $x(n) = [1, -2, 3, 2]$.	(7)
2	a)	Find 4 point circular convolution of $x(n) = h(n) = [1,1,1,1]$ using DFT.	(8)
	b)	Compute 8-point DFT of the sequence [1 1 1 1 0 0 0 0] using Decimation in Time FFT algorithm	(7)
3	a)	Let $x(n) = \{1,0,1,0\}$ and $h(n) = \{1,2,2,1\}$. Find 4 point DFTs of these sequences using a single 4 point DFT.	(8)
	b)	Find the IDFT of $X(k) = [1,0,1,0]$ using DIF FFT algorithm.	(7)
		PART B	
		Answer any two full questions, each carries 15 marks.	
4	a)	Prove that a symmetric impulse response results in a linear phase response for an	(8)
		FIR filter with an even filter order N.	
)	b)	Compare main 3 properties of rectangular, Hanning and Hamming window	(3)
		functions.	
	c)	How filter order is selected in the window-based method of FIR filter design.	(4)
5	a)	Explain impulse invariant mapping. List the main limitations of impulse invariant	(5)
		mapping.	
	b)	Design a Digital Butterworth filter to satisfy the constraints $0.9 \le H(\omega) \le$	(10)
		1; $0 \le \omega \le 0.5\pi$. $ H(\omega) \le 0.2$; $0.75\pi \le \omega \le \pi$. Use bilinear transformation.	
		Assume T=1 s.	
6	a)	Design a Linear phase LPF with a cut off frequency of 0.5π rad/s using frequency	(10)
		sampling. Take $N = 13$, use type 1 design.	
	b)	Derive the mapping function from s to z in Bilinear transformation. Explain	(5)
		frequency warping.	

06000EC301122003

PART C

Answer any two full questions, each carries 20 marks.

- 7 a) Realise the system given by H(z) = 3+3.6z⁻¹+0.6 z⁻²/(1+0.1z⁻¹-0.2z⁻²) in cascade form and parallel (10) form.
 b) Explain transposed form of filter structure. Realise the system y(n) = b₀x(n) + (10)
 - $b_1 x(n-1) + b_2 x(n-2) a_1 y(n-1) a_2 y(n-2)$ in transposed form.
- 8 a) Explain decimation and interpolation.

5

b) Explain effects of coefficient quantisation in FIR and IIR filters. (7)

(6)

- c) Why lowpass filtering is performed before down sampling? How will you decide (7) the cutoff frequency of the low pass filter?
- 9 a) Explain the architecture of TMS320C67XX DSP processor with a neat diagram. (10)
 - b) Realise the transfer function $H(z) = \frac{1+2z^{-1}}{1-1.5z^{-1}+0.9z^{-2}}$ in Direct form 1 and 2. (10) Compare the number of delay elements, adders and multipliers needed in both cases.