00000CS365121902 APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Fifth Semester B.Tech Degree (S,FE) Examination January 2022 (2015 Scheme)

Course Code: CS365

Course Name: OPTIMIZATION TECHNIQUES

Max. Marks: 100

Duration: 3 Hours

PART A

Answer all questions, each carries 3 marks.

Marks

Growfast Company is evaluating four alternative single-period investment opportunities (3) whose returns are based on the state of economy. There is a chance of 20% fair economy, 50% good economy and 30% great economy. The returns (in Rs. 1000) for each investment opportunity and each state of economy are as follows:

Altamativa	State of economy			
Alternative	Fair	Good	Great	
W	1.0	3.0	6.0	
X	0.5	4.5	6.8	
Y	0.0	5.0	8.0	
7.	-4.0	6.0	8.5	

Using the decision-tree approach, determine the expected return for each alternative. Which alternative proposal would you recommend?

- 2 State true or false, justify: Monte Carlo Simulation tells not only what could happen, but also how likely it is to happen. (3)
- What do you mean by continuous optimization? Give at least two examples of it. (3)
- Define convex function. Prove that $f(x) = \cos x$ is a convex function in $\left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$. (3)

PART B

Answer any two full questions, each carries 9 marks.

- 5 a) Define the following: (i) interarrival time (ii) reneging (iii) parallel server (iv) Kendall's (4) notation
 - b) Give any 5 applications of optimization techniques. (5)
- 6 a) Consider the following Cost matrix with alternatives, A₁, A₂, A₃ and A₄ and states of (6) nature, S₁, S₂, S₃ and S₄. Determine the best among alternatives using
 - (i) Laplace (ii) Minimax (iii) savage/regret criterion (iv) Hurwicz criterion ($\alpha = 0.25$).

00000CS365121902

Alternative	States of nature				
S	S_1	S ₂	S_3	S ₄	
A_1	5	10	18	25	
A_2	8	7	12	23	
A_3	21	18	12	21	
A ₄	30	22	19	-15	

b) What are the reasons behind external constraint? Give any three.

- (3)
- 7 a) What is internal constraint? Give some valid ideas to tackle internal constraints.
- (4)

(3)

b) Explain operating cost and role optimization reducing operating cost.

(5)

PART C

Answer all questions, each carries 3 marks.

- What is the necessary and sufficient condition for optimum of unconstrained problem with single variable?
- Find the minimum of the function $f(x) = x^5 5x^3 20x + 5$ by unrestricted search with step size of 0.2 starting from x = 0.
- Determine an initial feasible solution to the following transportation problem using northwest corner rule. (3)

		Destination				Cumpler
		1	2	3	4	Supply
Source	1	8	10	12	17	100
	2	15	13	18	11	150
	3	. 14	20	6	10	180
	4	13	19	7	5	210
Demand		160	170	100	210	

11 Consider the following assignment problem, where the objective is to minimize the cost. (3)

	J_1	J ₂	J_3
\mathbf{W}_1	7	4	1
W_2	4	- 6	7
W_3	5	4	6

Draw the network representation of this assignment problem. Formulate this problem as a LPP model.

PART D

Answer any two full questions, each carries 9 marks.

A department store wishes to purchase the following quantities of sarees

(9)

Types of Sarees A B C D E

Quantity 150 100 75 250 200

Tenders are submitted by four different manufacturers who undertake to supply not more than the quantities mentioned below (all types of sarees combined)

Manufacturer 1 2 3 4 Total quantity 300 250 150 200

Unit shipping costs in Rupees are

Page 2 of 4

00000CS365121902

		Sarees						
		Α	В	C	D	E		
ırer	1	275	350	425	225	150		
act	2	300	325	450	175	100		
Manufacturer	3	250	350	475	200	125		
Ma	4	325	275	400	225 175 200 250	175		

Find the initial feasible solution by Vogel's approximation method and determine the optimum distribution for the company.

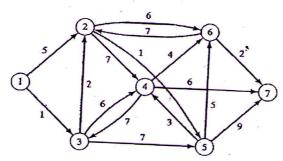
a) Five workers, W₁, W₂, W₃, W₄ and W₅, are available to work with machines, M₁, M₂, (4)

M₃, M₄, M₅ and M₆, and the respective costs (in Rs.) associated with each workermachine assignment are given below. A sixth machine (M₆) is available to replace one of
the existing ones and associated costs are also given below:

	M_1	M_2	M_3	M_4	M_5	M_6
\mathbf{W}_1	12	3	6	-	5	9
\mathbf{W}_{2}	4	11		5	-	8
W_3	. 8	2	10	9	7.	5
W_4	_	7	8	6	12	10
W_5	5	8	9	4	6	1

Determine optimal assignment and the associated saving cost. Will the sixth machine replace any machine? If yes, which one?

- b) Use the graphical method to solve this problem: $\min Z = 3x + 2y$ subject to $x + 2y \le 12$, 2x + 3y = 12, $2x + y \ge 8$, where $x, y \ge 0$. (5)
- Solve the LPP using Big M method: $\min Z = 3x + 4y + 5z$, subject to, $x + y \le 10$, (9) $x + 3y + z \ge 9$, $y + z \ge 4$ and $x, y, z \ge 0$

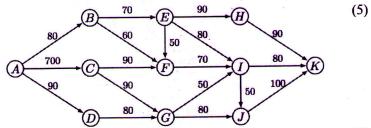

PART E

(10)

(6)

Answer any four full questions, each carries 10 marks.
Using Floyd Warshall's Algorithm find shortest path, with distance,

(i) from 1 to 7 (ii) from 6 to 5.



16 a) State true or false, justify:

(i) Tabu search is a traditional algorithm.

00000CS365121902

- (ii) NP is a the set of all decisions problem which cannot be solved by polynomial-time algorithm.
- (iii) NP hard is subset of NP.
- b) Outline the similarities and differences between Genetic Algorithms and Evolutionary (4) Strategies.
- 17 a) Determine the maximum flow from Node A to Node K.

- b) Define NP class problem. How NP-hard differ from NP-complete? Give appropriate (5) examples for each.
- 18 a) What is the role of Metropolis acceptance criterion in simulated annealing? (4)
 - b) Explain the solution process of Simulated annealing with a diagram. (6)
- What do you mean by Job scheduling problem? Write procedure to solve job scheduling problem using Genetic algorithm.
- 20 a) What are the important components of Tabu search? Draw diagram connecting all these components and show solution process.
 - b) Explain any 3 types of crossover process in Genetic algorithm, with examples. (6)
