02000CST292072102

Reg No.:____

Name:

FO

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Fourth Semester B.Tech (Hons) Degree Examination July 2021 (2019 admission)

Course Code: CST292

Course Name: Number Theory

Max. Marks: 100

Duration: 3 Hours

2			
		PART A	
K		(Answer all questions; each question carries 3 marks)	Mark
1		State Well ordering Principle.	3
2		Apply the Euclidean algorithm to find gcd(4076, 1024).	3
3		Define Mersenne primes with an example.	3
4		Show that $2^{314} \equiv 2 \pmod{341}$	3
5		Verify that 2 is a primitive root modulo 9.	3
6		Explain Euler Totient function with example	3
7		Define Jacobi symbol	3
8		State the law of quadratic reciprocity	3
9		Define Pell's equation.	3
10		Show that 23 cannot be represented as a sum of two squares.	3
		PART B	
		(Answer one full question from each module, each question carries 14 marks)	
		Module - 1	
11	a)	Explain Extended Euclidean algorithm.	7
	b)	Find gcd(1914,899) using Euclidean algorithm and express in terms of Bezout's	7
		identity (ax+by=d).	

OR

12	a)	Let a,b and c be integers with $a \neq 0$ and $b \neq 0$. Prove that If a b and b c then a c.	7
	b)	Describe the properties of modular arithmetic and modulo operator.	7
		Module - 2	
13	a)	Let P be a prime and 'a' any positive integers. Then prove that $a^p \equiv a(modp)$	7
	b)	Find all the solutions of $24x + 34y = 6$.	7

OR

02000CST292072102

14	a)	Define Fermat primes. Show that any two distinct Fermat numbers are Relatively	7
		prime.	
	b)	Explain Chinese remainder theorem and solve the system of congruences,	7
		$x \equiv 2 \pmod{3}, x \equiv 3 \pmod{5}, x \equiv 2 \pmod{7}$	
		Module - 3	
15	a)	If m is relatively prime to n, show that $\Phi(mn) = \Phi(m)\Phi(n)$.	7
	b)	Distinguish between public key encryption and private key encryption	7
		techniques. Also mention merits and demerits of both.	
		OR	
16	a)	Let a be a positive integer such that $(a,m) = 1$ and $ord_m a = e$. Then prove that a^n	7
		$\equiv 1 \pmod{m}$ if and only if $e n$.	
	b)	Define Carmichael number and show that a 561 is a Carmichael number.	7
		Module - 4	
17	a)	State and prove properties of Legendre's symbol.	7
	b)	Define Quadratic Residue and find the quadratic residue and non-residue of	7
		modulo 13.	
		OR	
18	a)	Define Mobius function. Prove that the function ' μ ' is multiplicative.	7
	b)	Solve the quadratic congruence $2x^2 + 3x + 1 \equiv 0 \pmod{7}$	7
		Module -5	
19	a)	Show that sums of two squares is closed under multiplication and express the	
		product (13*7) as the sums of two squares.	7
	b)	Solve the Pell's equation $x^2 - 2y^2 = 1$	7
		OR	
20	a)	Express $\frac{227}{157}$ as a finite simple continued fraction.	7
	b)	Show that Gaussian integers is closed under addition, subtraction and	7
		multiplication	
