02000EC203092002

Reg No.:____

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSI

Third Semester B. Tech Degree (S,FE) Examination January 2022 (2015, Schem

Course Code: EC203

Course Name: SOLID STATE DEVICES (EC,AE)

Max. Marks: 100

Duration: 3 Hours

Marks

PART A

Answer any two full questions, each carries 15 marks.

- a) Show that the probability that a state ΔE above Fermi level (E_F) is occupied by (4) electron is same as the probability that a state ΔE below E_F is empty.
- b) Plot carrier concentration versus temperature for silicon doped with 10¹⁷ (5) atoms/cm³. Comment about the causes of variations in concentration with the temperature
- c) A sample of silicon is doped with $10^{17} cm^{-3}$ phosphorous atoms. What Hall (6) voltage would you expect in a sample 100 µm thick if $I_x = 1 mA$ and $B_z = 10^{-5} Wb/cm^2$.
- 2 a) With suitable assumptions, derive Einstein's relation for mobility of electrons in (8) a semiconductor
 - b) A n- type silicon sample with $N_d = 10^{17}$ atoms/cm³ is steadily illuminated (7) such that $g_{op} = 10^{20}$ EHP/cm³ sec. If $\tau_n = \tau_p = 1\mu$ s for this excitation, Draw the energy band diagram with the quasi Fermi levels at 300K. Intrinsic carrier concentration of silicon is 1.5×10^{10} cm⁻³.
- 3 a) With the schematic of particle flow and corresponding current directions, give (8) the mathematical expressions for total current density
 - b) Differentiate direct recombination and indirect recombination of excess carriers (7) with suitable energy band diagrams

PART B

Answer any two full questions, each carries 15 marks.

- 4 a) Draw the energy band diagram of a p-n junction at a) equilibrium b) Forward (6) bias c) Reverse bias.
 - b) An abrupt Si p-n junction has $N_A = 10^{18} \text{ cm}^{-3}$ on one side and $N_D = 5 \times 10^{15} \text{ cm}^{-3}$ on (6) the other. It has a circular cross section with a diameter of 10µm. Given, for Si at 300K, $n_i = 1.5 \times 10^{10} / \text{cm}^3$ and $\epsilon_r = 11.8$.
 - a) Calculate Fermi level positions in the p and n regions.
 - b) Find the contact potential V_o .
 - c) What are the assumptions taken for the derivation of the general form of Diode (3) equation?

1

02000EC203092002

5 a) Derive the expression for depletion capacitance of a PN junction. (6)

b) What is a tunnel diode? Draw V-I characteristic of tunnel diode (4)

(5)

- c) Differentiate Zener breakdown and Avalanche breakdown.
- 6 a) With suitable assumptions, derive the expression for open circuit contact (8) potential of a p-n junction
 - b) What is work function? Give schematic explanation for energy band diagram of (7) Schottky barrier formed between metal and n-type semiconductor

PART C

Answer any two full questions, each carries20 marks.

- 7 a) Schematically represent the hole and electron flow in a PNP transistor in active (8) mode. Describe base, emitter and collector current components in a PNP transistor and write expressions for terminal currents in terms of the component currents.
 - b) What is Early effect mechanism in BJT and what is Early voltage? What are the (6) effects of this mechanism to the terminal currents of BJT
 - c) Draw and label the minority carrier distribution in a PNP transistor in active (6) mode.
- 8 a) With the help of necessary band diagrams, explain equilibrium, accumulation, (10) depletion and inversion stages of a MOS capacitor.
 - b) A silicon n channel MOSFET has μn=600cm 2/V-sec, Cox=1.2 × 10-7 F/cm2, (5) W=50μm, L=10μm and VTH=0.8V. Find the drain current when (i). VGS=2V and VDS=1V (ii) VGS=3V and VDS=5V
 - c) Give schematic view of n-channel MOSFET. Plot the output characteristic and (5) describe it with equations
- 9 a) Derive equations for excess hole distribution and terminal current equations of (10) NPN transistor.
 - b) What is MOSFET scaling? What are the advantages and disadvantages of (5) scaling
 - c) An n+ -polysilicon gate n-channel MOS transistor is made on a p-type Si (5) substrate with Na = 5×10^{15} cm⁻³. The SiO₂ thickness is 100Å in the gate region, at the onset of inversion and the effective interface charge Q_i is $4 \times 10^{10} q C/cm^2$. Find
 - i. maximum width of depletion layer

ii. threshold voltage, V_T. [Given ε_r of Si = 11.8 and ε_r of SiO₂ = 3.9]
