02000EC205092001

Reg No .:_

D

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSIT

Third Semester B.Tech Degree (S,FE) Examination January 2022 (2015 Scheme)

Course Code: EC205

Course Name: ELECTRONIC CIRCUITS (EC,AE)

Max. Marks: 100

Duration: 3 Hours

PART A

Answer any two full questions, each carries 15 marks.

 a) For the given circuit β=100 for silicon transistor. Calculate the operating points. (7) Assume data that are not given.

 $R_{1} = 10 \text{ k}\Omega$ $R_{1} = 10 \text{ k}\Omega$ $R_{1} = 10 \text{ k}\Omega$ $R_{2} = 5 \text{ k}\Omega$

- b) With a neat circuit diagram, design a RC integrator circuit for an input frequency (4) of f = 1 kHz.
 c) Explain the concept of ac and dc load line. (4)
- 2 a) Derive the condition for a high pass RC circuit to behave as a differentiator. (5)
 - b) What is bias stability? Derive the stability factor for leakage current of a collector (7) to base bias transistor circuit.
- c) Obtain the transfer function for a low pass filter. (3)
- 3 a) Draw the small signal hybrid Π model of the given circuit. Assume data not given. (8)

Marks

02000EC205092001

۲

â

	b)	Derive the expression for voltage gain of a two-stage cascade amplifier.	(7)		
		PART B			
Answer any two full questions, each carries 15 marks.					
4	a)	What is Miller effect?	(3)		
	b)	From the high frequency equivalent circuit, derive the expression for beta cut off	(9)		
		frequency of a bipolar transistor. Draw the frequency response for short circuit	N S		
		current gain.			
	c)	What are the conditions for sustained oscillation?	(3)		
5	a)	Find mid-frequency voltage gain and output impedance of a CE amplifier without	(7)		
		bypass capacitor using hybrid П model.			
	b)	Draw the circuit diagram of cascode amplifier.	(4)		
	c)	Explain the working of an LC tank circuit.	(4)		
5	a)	Draw the circuit diagram of a Hartley oscillator. In Hartley Oscillator $L_1=0.3$ mH,	(4)		
	2	$L_2 = 0,3mH$ and C=0.003µF. Calculate the frequency of oscillation.			
	b)	What are different feedback topologies? Explain how the current series feedback	(7)		
	а. 1	effect the input and output impedances.			
	c)	Differentiate between synchronous and stagger tuning.	(4)		
		PART C			
		Answer any two full questions, each carries20 marks.			
7	a)	A class-B push pull amplifier working with V_{cc} =25V provides a 22V peak signal	(5)		
		to a 8Ω load. Calculate the amplifier efficiency and power dissipated per			
		transistor.			

02000EC205092001

	b)	With a neat circuit diagram, explain the working of a series voltage regulator with	(7)
		error amplifier.	
	c)	Draw the circuit diagram of a bistable multivibrator and explain its working with relevant waveforms.	(8)
8	a)	With neat circuit diagrams and waveforms, explain the working of a transistor	(10)
	a is	bootstrap sweep generatorcircuit. What are itsapplications?	
	b)	Draw the circuit diagram of a class AB push pull amplifier and explain its	(6)
		working.	
	c)	What is cross over distortion in amplifiers? How it is solved.	(4)
9	a)	Draw the circuit diagram of a transistor shunt voltage regulator and explain its	(8)
		working.	
	b)	Differentiate between line and load regulations.	(6)
	c)	Draw and explain the working of a Schmitt trigger.	(6)

1