D

02000EET206052103

	11	NG	G. COLLEGE.
/	1HL	AISSU.	Pages: 2
	λO	THR	
UN	V	ER	TY.

Reg No.:____

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Fourth Semester B.Tech Degree Examination July 2021 (2019 Scheme

Course Code: EET206 Course Name: DIGITAL ELECTRONICS

		Course name: DIGITAL ELECTRONICS						
Ma	Max Marks: 100 Duration:							
PART A								
*		(Answer all questions; each question carries 3 marks)	Marks					
1		Convert	(3)					
		a) (7483) ₁₀ into hexadecimal						
		b) 1 1001 0100 into Gray Code						
2		Realize NOT, AND and OR gate using NAND gates only.	(3)					
3		State and explain DeMorgan's theorem.	(3)					
4		Prove that A+A'B=A+B.	(3)					
5		Draw a 4-bit gray to binary code converter circuit.	(3)					
6		Draw the block diagram of ALU.	(3)					
7		Explain Preset and Clear inputs of a flip-flop.	(3)					
8		Draw the logic diagram of a 4 bit Johnson counter and explain its working.	(3)					
9		Draw and explain R-2R ladder type DAC	(3)					
10		Differentiate between PLA and PAL	(3)					
		PART B (Answer one full question from each module, each question carries 14 marks)						
		Module -1						
11	a)	Subtract 46 from 99 using 1's complement and 2's complement methods.	(7)					
		Compare both methods.						
	b)	Draw and Explain TTL NAND gate implementation `	(7)					
12	a)	With neat diagram, explain the operation of CMOS NOR gate.	(7)					
	b)	Explain the error detection using parity method in digital transmission. Discuss	(7)					
		how odd parity error detection carried out for transmitting the letter 'B' in						
		ASCII code.						

02000EET206052103

Module -2

13	a)	Design a full subtractor circuit using basic gates.				
	b)	Reduce the expression using K map,				
	*	$F(A,B,C,D) = \sum m(6,7,8,10,11,15) + d(0,2,3,4,5,9,14).$				
14	a)	Draw and explain four bit parallel adder/subtractor circuit.				
-1	b)	Express F (A,B,C,D)= $\overline{A + B\overline{C} + C} + A\overline{C}$ in standard SOP and POS forms.				
		Module -3				
15	a)	Realize a 2- bit comparator circuit.	(8)			
	b)	Implement the function $F(A,B,C,D) = \sum m(0,2,4,7,9,14)$ using 4 X 1 MUX.	(6)			
16	a)	Differentiate decoder and encoder. Design a BCD to decimal decoder circuit.	(8)			
	b)	Design an even parity generator circuit for 3-bit messages.	(6)			
		Module -4				
17	a)	Design a mod-12 asynchronous counter using J-K flip flops. Draw the timing	(8)			
		diagram.				
	b)	Explain different types of shift registers.	(6)			
18	a)	Design mod-14 synchronous counter using T-flip flop by explaining the steps	(10)			
		in detail.				
	b)	Convert J-K flip-flop to T flip-flop.	(4)			
		Module -5				
19	a)	Compare Mealy and Moore state machine models with example.	(6)			
	b)	Explain the working of	(8)			
		(i) successive approximation ADC and				
		(ii) Flash type ADC.				
20	a)	Implement the function $F(A, B, C, D) = \sum m$ (3,7,8,9,11,15) using PLA	(6)			
	b)	Implement AND gate and a half adder circuit using VHDL.	(8)			

**