APJ ABDULKALAM TECHNOLOGICAL UNIVERSITY 08 PALAKKAD CLUSTER

Q. P. Code : IAR0821252D-I

(Pages: 2)

SECOND SEMESTER M.TECH. DEGREE EXAMINATION JULY 2021

Branch: Mechanical Engineering

Specialization: Industrial Automation and Robotics

08ME6352(D) NON-LINEAR AND ADAPTIVE CONTROL SYSTEMS

(Common to IAR)

Time: 2 hour 15 minutes

ll six questions

Max. Marks: 60

question.

	Answer all six questions.
Modules 1 to 6: Par	t 'a' of each question is compulsory and answer either part 'b' or part 'c' of each

Q. No.	Module 1	Marks
1. a	Define linear and non-linear control systems and explain their differences.	3
	Answer b or c	
b	Derive the describing function of Ideal Relay Non-Linearity?	6
С	Derive the describing function of Saturation Non-Linearity?	6

Q. No.

Module 2

Marks

3

6

2. a Explain phase plane and phase trajectory with neat sketch?

Answer b or c

b Consider a system with an ideal relay as shown in the following figure. Construct phase trajectories, corresponding to initial conditions, c(0), $\dot{c}(0)=1$.Take r=2 volts and M =1.2 volts.

c Construct a phase trajectory by delta method for a nonlinear system represented by the differential equation $\ddot{X} + 4|\dot{X}|X + 4\dot{X} = 0$. Choose the initial conditions as X(0)=1.0 and $\dot{X}(0)=0$.

6

Q. No.	Module 3	Marks
3. a	Explain the terms: (i) Positive definiteness. (ii) Negative definiteness.	3
	Answer b or c	
b	Determine Whether or not following quadratic form is positive definite	6
	$Q(x_1, x_2) = 10x_1^2 + 4x_2^2 + x_3^2 + 2x_1x_2 - 4x_3x_1$	
Ŕ	Consider the nonlinear system and prove that the equilibrium points at the origin for the system $\dot{x_1} = -6x_1 + 2x_2$, $\dot{x_2} = 2x_1 - 6x_2 - 2x_2^3$ is asymptotically stable.	6
<		
Q. No.	Module 4	Marks
4. a	State and explain Cycle criterion	3
	Answer b or c	
b	Find the sector [0,k] for which the given transfer function is absolutely stable using Popov criteria. $G(s) = \frac{s}{s^2 - s + 1}$.	6
С	How sliding mode controller is used in automation applications: A Case Study	6
Q. No.	Module 5	Marks
5. a	Explain the importance of Gain scheduling in adaptive control system.	4
	Answer b or c	
b	Differentiate between direct adaptive control system and indirect Adaptive control system.	8
C	Explain the design procedure for developing an MRAC using MIT rule with necessary diagram.	8
Q. No.	Module 6	Marks
6. a	Briefly explain adaptive predictive control scheme.	4
<u>1</u>	Answer b or c	
b	Explain Self tuning regulator using Pole placement design in detail.	8
c	Compare the performance of Indirect and Direct Self Tuning Regulator designs in detail.	8