No. of Pages: 2

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY SECOND SEMESTER M.TECH DEGREE EXAMINATION, OCT/NOV 2021

Branch: Electrical and Electronics Engineering

Stream(s): Control Systems, Guidance and Navigational Control, Electrical Machines, Power System and Control

01EE6116: SLIDING MODE CONTROL

Duration: 3 hrs

Max. Marks: 60

Answer any two full questions from each PART Limit answers to the required points.

PART A

- 1. (a) Prove that the matrix pair (A_{11}, A_{12}) in regular form is controllable if and only (5) if the pair (A, B) is controllable.
 - (b) Design a sliding mode control for a double integrator system. (4)
- 2. (a) Given the system

$$\dot{x} = Ax + Bu$$

and

$$\sigma = Gx$$

with σ as the sliding output, find the equivalent control u_{eq} and the sliding dynamics. Given

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 3 \\ 1 & 0 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 3 & 9 \\ 1 & -2 \\ -1 & 0 \end{pmatrix}, \quad G = \begin{pmatrix} 1 & 29 & 0 \\ 1 & 12 & 0 \end{pmatrix}$$

- (b) Explain in detail the method to solve dynamical systems with discontinuous (5) right hand sides.
- 3. (a) Consider the dynamic equation of a hot air balloon where the control input is (7) the fuel flow into the burner which is represented by

$$\dot{x} = Ax + Bu$$
 .

where

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & -2 & 1 \\ 0 & 0 & -1 \end{pmatrix}, \quad B = \begin{pmatrix} 0 \\ 0 \\ 10 \end{pmatrix}$$

Design a sliding surface for the system so as to obtain the sliding mode poles at $-1 \pm j$ and obtain the sliding mode control.

(b) Explain the significance of η reachability condition.

(2)

(4)

PART B

(0)

4.	to parametric variations in system matrix and also subjected to external disturbance	()
5.	Obtain an integral sliding mode controller to stabilize a simple pendulum with frictional force acting on it.	ha (9)
6 .	(a) Show that the fast output sampling technique exactly realizes an estimator.	(4)
	(b) Derive the multirate output feedback based quasi sliding mode control for a certain systems.	un- (5)
<	PART C	
7.	(a) Explain second order sliding mode controllers.	(4)
	(b) Prove the finite time convergence of trajectories in higher order sliding mo- controllers.	ode (8)
8.	(a) Explain super twisting based observers.	(6)
	(b) Obtain the sliding mode observer for a triple integrator.	(6)
9.	(a) Explain the variable gain super twisting algorithm.	(6)
	(b) Show that the sliding mode based observation in an uncertain LTI system yie a reduced order motion during sliding mode independent of uncertainty.	elds (6)