APJ ABDULKALAM TECHNOLOGICAL UNIVERSITY

08 PALAKKAD CLUSTER

(Pages: 3)

Q. P. Code : CSE0821232-I

Reg. No:

SECOND SEMESTER M. TECH. DEGREE EXAMINATION JULY 2021

⁻ Branch: Computer Science and Engineering Specialization: Computer Science and Engineering

08CS6032 EVOLUTIONARY COMPUTING

(Common to CSE)

Time: 2 hour 15 minutes

Max. Marks: 60

3

Name:

Answer all six questions.

Modules 1 to 6: Part 'a' of each question is compulsory and answer either part 'b' or part 'c' of each question.

Q. No.	Module 1	Marks	
1. a	EC systems search probabilistically for good solutions. What advantages you see in using probabilistic algorithms over deterministic algorithms for solving complex search problems?		
·* 24	Answer b or c		
b	Represent, using pseudo code, the Evolutionary Algorithm. Discuss the main components used to solve an EA.	6	
с	Differentiate Genetic algorithm and Genetic programming	6	
Q. No.	Module 2	Marks	

2. a What is the main difference(s) between simulated annealing and hill climbing?

Answer b or c

b Generate a heuristic function to solve the following problem using hill climbing **6** technique:

	2	8	3	
	1	6	4	should be changed
No. 1	7		5	to

1	2	3
8		4
7	6	5

The following table shows evaluations of a simulated annealing algorithm. For each evaluation give the probability of the next state being accepted. Assume the objective function is being maximised. Discuss the results.

No.	Current State (Evaluation)	Potential New State (Evaluation)	Temperature
1	120	50	20
2	120	50	500
3	120	100	20
4	120	100	500
7	120	150	20
8	120	150	500

Q. No.

С

Module 3

Marks

6

6

3. a One-Point Crossover is not suitable for The Travelling Salesman Problem **3** (TSP). Why is this?

Answer b or c

b Suppose a genetic algorithm uses chromosomes of the form x = a b c d e f g h with a fixed length of eight genes. Each gene can be any digit between 0 and 9. Let the fitness of individual x be calculated as:

f(x) = (a + b) - (c + d) + (e + f) - (g + h), and let the initial population consist of four individuals with the following chromosomes:

x1 = 65413532

x2 = 87126601

x3 = 2 3 9 2 1 2 8 5

x4 = 4 1 8 5 2 0 9 4

Evaluate the fitness of each individual, and arrange them in order with the fittest first and the least fit last.

Perform the following crossover operations:

- i) Cross the fittest two individuals using one-point crossover at the middle point.
- ii) Cross the second and third fittest individuals using a two-point crossover (points b and f).

Name and describe the main features of Genetic Algorithms

6

2

Q. N	0. Module 4	
4. a	Explain path retracing done in ACO 1 ii	Marks
	and discuss its relevance.	3
	Answer b or c	
b	Using the travelling salesman problem as an example, define the following terms with relation to ant algorithms	6
•	Visibility	
1	Evaporation	
	Transition Probability	
< c	Explain any three variants of ACO algorithm	6
Q. No.	Module 5	N .
5. a	What is the initialization step of the Particle Swarm Optimization method?	Marks
	Answer b or c	•
b	How are the velocity and position of particles updated? Explain in detail with the pseudo code	8
C	Describe the neighbourhood topologies used in Particle Swarm Optimization	8
Q. No.	Module 6	Marke
6. a	Differentiate abc _{gbest} and abc _{gbestdist} algorithms	A
	Answer b or c	4
Ь	Explain Artificial Bee Colony algorithm and its working in detail. Write the criteria for selecting and abandoning a food source by bees	8
c	Suggest a method for solving any NP problem with ABC algorithm. Explain with example based on fitness of each and every next generation	8