04000MR402052002

Reg No.:_

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Eighth Semester B.Tech Degree Supplementary Examination August 202

Course Code: MR402

Course Name: Soft Computing Techniques

	Ma	x. M	arks: 100 Duration: 3	Hours
			PART A Answer all questions, each carries 5 marks.	Marks
Ľ	1		List down the characteristics of soft computing.	(5)
	2		Draw and explain the block diagram for a fuzzy inference system.	(5)
	3		Give the random search algorithm.	(5)
	4		Evaluate the working of a competitive learning network.	(5)
	5		Show the ANFIS architecture for the Sugeno fuzzy model, where weight	(5)
			normalization is performed at the very last layer.	
	6		Collect learning methods that cross-fertilize ANFIS and RBFN.	(5)
	7		Describe the use of ANFIS for nonlinear regression using automobile Miles Per	(5)
			Gallon prediction.	
	8		Inspect color paint manufacturing process.	(5)
			PART B	
			Answer any three full questions, each carries 10 marks.	
	9	a)	Define Fuzzy numbers, bandwidth, symmetry, open left and open right.	(10)
	10	a)	Explain the Mamdani fuzzy inference system using product and max for T-norm	(10)
			and T-conorm operators respectively with diagram.	
	11	a)	Elaborate the exclusive-OR problem.	(10)
	12	a)	Set up	(10)
			1. Single and double output Radial Basis function network that uses weighted	
			sum,	
			2. Single and double output Radial Basis function network that uses weighted	
			average.	
	13	a)	Evaluate an intelligent system.	(5)
		b)	Write about the Tsukamoto fuzzy model.	(5)
	14	a)	Assess a 3-3-2 backpropagation multilayer perceptrons.	(5)

Page 1of 2

04000MR402052002

	b)	Identify the network representation of learning vector quantization.	(5)
15	a)	PART C Answer any two full questions, each carries 15 marks. Investigate the equivalent ANFIS/CANFIS architecture for a two-input, one	(10)
		output Sugeno fuzzy model.	
	b)	Draw equivalent ANFIS architecture for a two-input two-rule Tsukamoto fuzzy	(5)
		model.	
16	a)	Explain about printed character recognition using ANFIS.	(10)
	b)	Illustrate the input-output relation in a typical color recipe prediction system.	(5)
17	a)	Examine hybrid learning algorithm.	(7)
	b)	Discuss the genetic strategies used in color paint manufacturing intelligence.	(8)
	· · · · ·		

1

... 10 2]

i

1

1