02000EET204052103

Reg No.:____

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNI

Fourth Semester B.Tech Degree Examination July 2021 (2019 Soher

Course Code: EET204 Course Name: ELECTROMAGNETIC THEORY

DADT

Max. Marks: 100

Duration: 3 Hours

Pages:

ERS

*		PART A (Answer all questions; each question carries 3 marks)	Marks
1		Explain divergence of a vector field with its physical significance	3
2		Evaluate the gradient of the scalar field $\frac{3z}{\rho} \cos \varphi$	3
3		Sketch equipotential surfaces for a positive test charge	3
4		Illustrate the conservative nature of electrostatic field	3
5		Using Ampere's circuital law, obtain the expression for magnetic field intensity	3
		due an infinite wire carrying current	
6		What do you mean by magnetic vector potential	3
7		Explain the significance of Poynting vector	3
8		What is skin effect and explain its significance	3
9		List the reasons for Electromagnetic Interference	3
1 0		Explain impedance matching in transmission lines	3
		PART B (Answer one full question from each module, each question carries 14 marks)	
		Module -1	
11	a)	State and prove Stokes' theorem	7
	b)	Evaluate the curl of the following vector fields a) $\mathbf{P} = xy \mathbf{a}_x + y^2 \mathbf{a}_y + xz \mathbf{a}_z$	7
		b) $\mathbf{Q} = \rho \mathbf{z}^2 \mathbf{a}_{\rho} + \rho \sin^2 \varphi \mathbf{a}_{\varphi} + 2\rho z \sin^2 \varphi \mathbf{a}_z$	
12	a)	Explain spherical to rectangular coordinate system transformation	7
	b)	Express the vector $\mathbf{A} = \rho \sin \varphi \mathbf{a}_{\rho} + \rho \cos \varphi \mathbf{a}_{\varphi} - 2z \mathbf{a}_{z}$ in rectangular coordinates	7
×.		Module -2	
13	a)	State and explain Gauss's law	7
	b)	Using Gauss's law, determine the electric field intensity due to an infinite sheet	7
		charge of uniform surface charge density.	

1

02000EET204052103

14	a)	Derive the expression for capacitance of a coaxial cable	7
t (192 Segen	b)	Obtain Poisson's and Laplace's equations for a homogeneous material	7
		Module -3	
15	a)	State and explain Biot Savart's law	7
	b)	Obtain the expression for magnetic field intensity on the axis of a rectangular	7
		loop carrying current	
16	a)	Explain the boundary conditions for electric field in a dielectric-dielectric	7
	and a	interface	
	b)	State and explain the continuity equation for current	7
*		Module -4	
17	a)	Derive wave equations from Maxwell's equations	7
	b)	Explain propagation of uniform plane waves in a lossy dielectric medium	7
18	a)	Define the following terms: phase velocity, group velocity, Attenuation	6
		constant and Propagation Constant	
	b)	State and explain Poynting theorem	8
		Module -5	
19	a)	Obtain the transmission line equations and its solution	10
	b)	State the transmission line parameters	4
20	a)	Obtain the expression for propagation constant and characteristic impedance in	7
		the case of a lossless transmission line	
3	b)	A low loss coaxial cable of characteristic impedance 50 $\boldsymbol{\Omega}$ is terminated by a	7
		resistive load of 150 Ω . Calculate Voltage standing wave ratio. If the maximum	
		voltage in SWR is 30V, find the minimum voltage	

1

-1- 11 T

Page 2 of 2