02000MA202052002

Reg No.:

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Fourth Semester B. Tech Degree (S,FE) Examination August 2021 (2015 Scheine

Course Code: MA202

Course Name: PROBABILITY DISTRIBUTIONS, TRANSFORMS AND NUMERICAL METHODS

Max. Marks: 100

Duration: 3 Hours

Normal distribution table is allowed in the examination hall.

PART A (MODULES I AND II)

Answer two full questions.

1 a) A discrete random variable has the following probability distribution

x
0
1
2
3

P[X = x]
 $\frac{k}{2}$ $\frac{k}{3}$ $\frac{k+1}{3}$ $\frac{2k+1}{6}$

Find (i) value of k (ii) $P[X \le 2]$ (iii) Mean

- b) A discrete random variable X has the mean 6 and variance 2. If it is assumed that 8 the distribution is binomial find (i) $P[5 \le X \le 7]$ (ii) $P[X \le 2]$ (iii) P[X > 7]
- 2 a) The time in hours required to repair a machine is exponentially distributed with 7 mean 2. What is the probability that the repairing time is (i) at most 1 hour (ii) at least 30 min?
 - b) If X is normally distributed with mean 1 and variance 4, then (i) find P[-3 < X < 3] (ii) obtain k if $P[X \le k] = 0.6$
- 3 a) If X is a Poisson variate such that P[X = 1] = 0.3 and P[X = 2] = 0.2 then find 7 P[X = 0]

b) Let X has the probability density function $f(x) = \begin{cases} \frac{x+1}{2} & if -1 < x < 1 \\ 0 & otherwise \end{cases}$ Find the 8

mean and standard deviation of X.

PART B (MODULES III AND IV) Answer two full questions.

4 a) Find the Fourier Integral representation of
$$f(x) = \begin{cases} 1 & \text{if } |x| < 1 \\ 0 & \text{if } |x| > 1 \end{cases}$$
 and hence 7
evaluate $\int_{0}^{\infty} \frac{\sin \lambda}{\sin \lambda} \cos \left[\frac{1}{2} x d \right]$

evaluate $\int_0^\infty \frac{\sin\lambda}{\lambda} \cos\lambda x \, d\lambda$

Page 1 of 3

7

8

02000MA202052002

b)	Find the Fourier Sine & Cosine Transform of $f(x) = \begin{cases} 2-x & \text{if } 0 \le x \le 2\\ 0 & \text{if } x \ge 2 \end{cases}$	8
a)	Using Convolution theorem find $L^{-1}\left[\frac{s^2}{(s^2+1)(s^2+4)}\right]$	7
b)	Evaluate the Laplace Transform of (i) $\frac{1-cost}{t}$ (ii) $\frac{se^{-2s}+\pi e^{-s}}{s^2+\pi^2}$	8
a)	Find the Fourier Transform of $f(x) = \begin{cases} x^2 & if x \le 1\\ 0 & otherwise \end{cases}$	7
b)	Solve: $y'' - 3y' + 2y = 4e^{2t}$ given $y(0) = -3$, $y'(0) = 5$ by using Laplace	8

Transform.

PART C (MODULES V AND VI) Answer two full questions.

7 a) Apply Lagrange's interpolation formula to find the value of yat x = 3 for the 6 following data.

x	1	2	7	8
y = f(x)	4	5	5	4

- b) Find a real root of $x^3 + x 1 = 0$ lying between 0 and 1 by Newton- Raphson 7 Method (Correct to three decimal places)
- c) Fit a polynomial to the data using Lagrange's formula.

x	0	1	3	4
У	-5	0	2	5

Find the value of y at x = 2.

8

5

6

a) Apply Euler's Method to determine the values of y at x = 0.1, 0.2 and 0.3 for y' = 1 - y given y(0) = 0. (Take h = 0.1)

- b) Apply Gauss- Seidel Method to solve : 8x 3y + 2z = 20, 4x + 11y z = 33, 76x + 3y + 12z = 35. (Correct to two decimal places)
- c) Evaluate $I = \int_0^1 e^x dx$ by (i) Trapezoidal Rule (ii) Simpson's one-third rule (correct to three decimal places) by taking h = 0.1. Also check the result by actual integration.
- 9 a) The population of a town is given as follows.

Year	1931	1941	1951	1961
Population(in lakhs)	66	81	93	101

10

7

7

6

02000MA202052002

Estimate the population increase during the period 1935 to 1955 using Newton's interpolation formula

b) Compute y(0.2) given $\frac{dy}{dx} + y + xy^2 = 0$, y(0) = 1 by taking h = 0.1 using 10 Runge-Kutta method of fourth order (correct to 4 decmals).

1