02000MAT202052102

Reg No.:

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Fourth Semester B.Tech Degree Examination July 2021 (2019 Scheme)

Course Code: MAT202 Course Name: PROBABILITY, STATISTICS AND NUMERICAL METHODS

Max. N	farks: 100 Duration:	3 Hours
	(Normal distribution table and t- distribution table are allowed)	
K	PART A	Manka
	(Answer all questions; each question carries 3 marks)	Marks
1	Determine the binomial distribution for which mean is 4 and variance is 3.	3
2	X follows Poisson distribution with mean 6. Find $P(X = 1)$, Variance (X).	3
3	A continuous random variable X has PDF $f(x) = \frac{k}{1+x^2}$; $-\infty < x < \infty$	3
	Determine (i) k (ii) $P(X \ge 0)$	
4	A random variable X follows exponential distribution with mean 3. Find	3
5	P(X > 3), Variance(X) The properties of a characteristic of a neural time in 0.27 . Finally	2
5	The proportion of a characteristic of a population is $p = 0.37$. Find the mean and variance of the sample proportion obtained from a sample of size 100.	3
6	A sample of size 49 is taken with mean 35 and standard deviation 11 from a	
	population. Find the 99% confidence interval for the population mean.	3
7	Use trapezoidal rule to evaluate $\int_0^1 x^3 dx$ considering five subintervals.	3
8	Find a root between 0 and 1 for $cosx = 3x - 1$ using Newton-Raphson	3
3	method correct to 3 decimal places.	
9	Use Rungi-Kutta method of second order to find $y(0.1)$ for $\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}$,	3
	y(0) = 1. (Take $h = 0.1$)	
10	Given $\frac{dy}{dx} = 1 - y$, $y(0) = 0$. Use Euler's method with $h = 0.1$, to compute	3
	the value of $y(0.2)$.	
	PART B	
	(Answer one full question from each module, each question carries 14 marks)	
	Module -1	

1	>
	a)

The pdf of random variable given a X is k, P(X < 4), E(X), Var(X).

X	0	1	2	3	4	5	6
f(x)	k	3 <i>k</i>	5 <i>k</i>	7k	9k	11 <i>k</i>	13k

below.

Find

7

Page 1 of 3

02000MAT202052102

b) Prove that binomial distribution can be approximated to Poisson distribution 7 when n is large, p is small and $np = \lambda$.

7

7

7

7

7

- 12 a) A gambler plays a game of rolling a die with the following rules. He will win Rs. 200 if he throws a 6, but will lose Rs. 40 if he throws 4 or 5 and lose Rs. 20 if he throws 1, 2 or 3. Find the expected value that the gambler may gain.
 - b) The joint distribution of (X, Y) is given by $f(x, y) = \frac{x+y}{21}$, x = 1,2,3 and y = 1, 2. Then find the marginal distributions. Also, find E(X), E(Y).

Module -2

- 13 a) In an examination, 30% of the students got marks below 40 and 10% got marks above 75. Assuming the marks are normally distributed find, the mean and standard deviation of the distribution.
 - b) Buses arrive at a specified stop at 15 minutes interval starting at 8 am. If a passenger arrives at the stop at a random time that is uniformly distributed between 8.00 and 8.30 hours, find the probability that the passenger waits (i) less than 6 minutes for the bus (ii) atleast 12 minutes for the bus.
- 14 a) A distribution with unknown mean μ has variance 1.5. Use Central Limit 7 Theorem to find, how large a sample should be taken from the distribution in order that the probability that the sample mean will be with in the 0.5 of the population mean is 0.95.
 - b) The joint PDF of (X, Y) is given by f(x, y) = kxy 0 < x < 4; 1 < y < 5= 0 elsewhere

Find value of k. Determine marginal pdf of X and Y. Evaluate $P[X \ge 3, Y \le 2]$. Check whether X, Y are independent?

Module -3

- 15 a) A sample of 20 items has mean 42 and SD 5. Test whether the sample is from a 7 population with mean 45? (5% level of significance)
 - b) The mean life time of certain products is 1800 hrs with SD of 100 hrs. By applying a new technique, it is claimed that the mean life has increased. To test the claim a sample of 50 products were taken and it is found that the mean life time is 1850 hrs. Can we support the claim at 1% level of significance?
- 16 a) In a university 325 out of 600 students are boys. Does this information support
 7 the conclusion that majority of students in this university are boys? (use 5% level of significance)
 - b) Random samples drawn from two countries gave, the following data relating to 7 height of adult males.

19 X	Country A	Country B
Mean height	67.42	67.25
Standard deviation	2.58	2.50
Number in samples	1000	1200

Is the difference between the means significant? (5% level of significance)

02000MAT202052102

Module -4

17	a)	The population of	of a tow	n in the cens	us is as give	en in the data	a. Estimate the	7
		population in the	year 19	96 using New	ton's backwa	ard interpolat	ion formula.	
		Year (x) :	1961	1971	1981	1991	2001	
		Population (y) :	46	66	81	93	101	

- b) Using Lagrange's Interpolation method, find the polynomial f(x) which agree 7 with the following data: f(1) = 1, f(3) = 27, f(4) = 64. Hence find f(2).
- 18 a) Using Newton's divided difference interpolation formula evaluate f(3) from the following table:

x	1	2	4	5	6
у	14	15	5	6	19

b) Evaluate $\int_0^1 \frac{1}{1+x^2} dx$ using Simpson's 1/3 rd rule with h = 0.1.

7

14

7

Module -5

- 19 a) Obtain the value of y(0.1) using Runge-Kutta method of fourth order for the 7 differential Equation dy/dx = -y and y(0) = 1. (Take h = 0.1)
 - b) Use the method of least squares to fit a straight line y = ax + b for the 7 following data:

x	1	2	3	4	5
у	6	7	. 9	10	12

20

5

Solve by Gauss-Siedel method correct to 3 decimal places.

10x - 5y - 2z = 3, 4x - 10y + 3z = 3, x + 6y + 10z = 3

Page 3 of 3