Reg No.:_____

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Fourth Semester B.Tech Degree Examination July 2021 (2019 Scheme)

Course Code: MAT204

Course Name: PROBABILITY, RANDOM PROCESSES AND NUMERICAL METHODS Duration: 3 Hours

Max	. 1718	(Statistical Tables are allowed)	
۲		PART A (Answer all questions: each question carries 3 marks)	Marks
1		In a binomial distribution if the mean is 6, and the variance is 4, find $P[X=1]$.	3
2		Given that $f(x) = \frac{\kappa}{2^x}$ is a probability mass function of a random variable that can take	3
		on the values $x = 0, 1, 2, 3$ and 4, find (i) K and (ii) $P(X \le 2)$.	
3		Find the mean and variance for the PDF, $f(x) = \begin{cases} Kx^2 & 0 < X < 1 \\ 0 & elsewhere \end{cases}$	3
4		If random variable X has a uniform distribution in (-3,3), find P ($ X - 2 < 2$).	3
5		Define stationary random process. Define two types of stationary random process.	3
6		Write down the properties of the power spectral density.	3
7		Write down the Newton's forward and backward difference interpolation formula	3
8		Evaluate $\int_0^1 \frac{1}{1+x^2} dx$ with 4 subintervals by Simpson's rule.	3
9		Write the normal equations for fitting a curve of the form $y = a + bx + cx^2$ to a given	3
		set of pairs of data points.	
10		Using Euler's method, find y at $x = 0.25$, given $y' = 2xy$, $y(0) = 1$, $h = 0.25$.	3
		PART B	
		(Answer one full question from each module, each question carries 14 marks)	
		Module -1	
11	a)	Six dice are thrown 729 times. How many times do you expect at least three dice to	6
		show 1 or 2?	
	b)	Derive the formula for mean and variance of Poisson distribution	8
12	a)	A random variable X takes the values -3, -2, -1,0,1,2,3 such that $P(X=0) = P(X>0) =$	7
		P(X<0) and $P(X=-3) = P(X=-2) = P(X=-1) = P(X=1) = P(X=2) = P(X=3)$. Obtain	
		the probability mass function and distribution function of X.	

b) The joint probability distribution of X and Y is given by, $f(x, y) = \frac{1}{27}(2x + y)$;

x = 0, 1, 2 and y = 0, 1, 2.

(i) Find the marginal distributions of X and Y.

(ii) Are X and Y independent random variables.

Module -2

7

7

7

7

7

- a) Suppose the diameter at breast height (in.) of trees of a certain type is normally distributed with mean 8.8 and standard deviation 2.8.(i) What is the probability that the diameter of a randomly selected tree will be at least 10 in.? (ii) What is the probability that the diameter of a randomly selected tree will exceed 20 in.? (iii) What is the probability that the diameter of a randomly selected tree will exceed 20 in.? (iii) What is the probability that the diameter of a randomly selected tree will exceed 20 in.? (iii) What is the probability that the diameter of a randomly selected tree will be between 5 in. and 10 in.?
 - b) The amount of time that a surveillance camera will run without having to be reset is a random variable having exponential distribution with mean 50 days. Find the probabilities that such a camera will (a) have to be reset in less than 20 days. (b) not have to be reset in at least 60 days.
- 14 a) The joint density function of 2 continuous random variable X and Y is

 $f(x,y) = \begin{cases} cxy \ ; \ 0 < x < 4 \ , \ 1 < y < 5 \\ 0 \ ; \ otherwise \end{cases}$

(i) Find the value of the constant c.

(ii) Find P ($X \ge 3, Y \le 2$)

(iii) Find the marginal density of X.

b) The life time of a certain brand of tube light may be considered as a random variable with mean 1200 hours and standard deviation 250 hours. Using Central limit theorem, find the probability that the average life time of 60 lights exceeds 1250.

Module -3

- 15 a) Let $X(t) = A \cos \lambda t + B \sin \lambda t$, where A and B are independent normally distributed 7 random variables N (0, σ^2). Show that X(t) is WSS.
 - b) If $X(t) = A \cos (\omega t + \theta)$ Where A and $\dot{\omega}$ are constants and θ is uniformly 7 distributed over $[0,2\pi]$, find the auto correlation function and Power Spectral Density of the process.

- Assume that X(t) is a random process defined as follows: $X(t) = A \cos (2\pi t + \emptyset)$ 16 a) where A is a zero-mean normal random variable with variance $\sigma_A^2 = 2$ and \emptyset is uniformly distributed random variable over the interval $-\pi \leq \phi \leq \pi$. A and ϕ are statistically independent. Let the random variable Y be defined as $Y = \int_0^1 X(t) dt$. Determine (i) The mean of Y (ii) The variance of Y.
 - If the customers arrive at a counter in accordance with Poisson distribution with rate **b**) 7 of 2 per minute. Find the probability that the interval between two consecutive arrivals is (i) more than 1 minute (ii) between 1 minute and 2 minutes.

Module -4

Use Newton- Raphson method to find a non-zero solution of $f(x)=2x - \cos x = 0$ 17×a) 7

b) Using Lagrange's interpolating polynomial estimate y (5) for the following data:

X	1	3	4	6
У	-3	0	30	132

Find the polynomial interpolating the following data, using Newton's backward 7 18 a) interpolating formula

Х	3	4	5	6	7	1
У	7	11	16	22	29	

b) Using Newton's divided difference formula, evaluate y(8) and y(15) from the 7 following data

		1	10	11	13
48	100	294	900	1210	2028
	48	48 100	48 100 294	48 100 294 900	48 100 294 900 1210

Solve the following system of equations using Gauss- Seidel iteration method 7 a) starting with the initial approximation $(0,0,0)^{T}$

 $8x_1 + x_2 + x_3 = 8$

3

19

1

 $2x_1 + 4x_2 + x_3 = 4$

$$x_1 + 3x_2 + 5x_3 = 5$$

b) Fit a straight-line y = ax + b for the following data:

X	1	3	4	6	·· 8	9	11	14
Y	1	2	4	4	5	7	8	9

7

7

7

20 a)

Solve the following system of equations using Gauss- Jacobi iteration method 7 starting with the initial approximation $(0,0,0)^{T}$

7

 $20x_1 + x_2 - 2x_3 = 17$ $3x_1 + 20x_2 - x_3 = -18$ $2x_1 - 3x_2 + 20x_3 = 25$

b) Use Runge - Kutta method of fourth order to find y (0.1) from $\frac{dy}{dx} = \sqrt{x+y}$,

y(0) = 1 taking h = 0.1.