10000EC403122002

Reg No.:

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSI

Seventh Semester B. Tech Degree Supplementary Examination August

Course Code: EC403

Course Name: MICROWAVE & RADAR ENGINEERING

Max. Marks: 100

.

Duration: 3 Hours

		PART A Answer any two full questions, each carries 15 marks.	Marks
1	a)	Explain the significance of re-entrant cavities in microwave tubes. What are the	(4)
		different types commonly used re-entrant cavities?	
	b)	Determine the length (d) of an air-filled rectangular cavity operating in TE_{101}	(3)
		mode with resonant frequency $fr = 20$ GHz. The height $b = 2$ cm and width $a = 1$	
		cm	
	c)	With the help of Applegate diagram describe the operation of a reflex klystron	(8)
		oscillator.	
2	a)	With the diagram of a two cavity Klystron amplifier deduce the expression for	(8)
		optimum distance at which the bunching occurs.	
	b)	A pulsed cylindrical magnetron is operated with the following parameters:	(7)
		Anode voltage: $V_o = 25$ kV, Beam current: $I_o = 25$ A, Magnetic flux density: B_o	
		= 0.34 Wb/m^2 , Radius of cathode cylinder: a = 5 cm, Radius of anode cylinder: b	
		= 10 cm	
		Compute:	
		a. The cyclotron angular frequency	
		b. The cut-off voltage for a fixed B _o	
		c. The cut-off magnetic flux density for a fixed V_o	
3	a)	Explain with figure the power output and frequency characteristics of reflex	(7)
		klystron.	
	b)	2-cavity klystron operates at 4 GHz with $V0 = 1 \text{ kV}$, $I_0 = 22 \text{ mA}$, $d = 1 \text{ mm}$, $L =$	(8)
		3 cm. If the dc beam conductance and catcher cavity total equivalent	
		conductance are 0.25 x 10^{-4} mhos and 0.3x 10^{-4} mhos respectively.	
		Find out	
		(a) Beam coupling coefficient	

10000EC403122002

- (b) Dc transit angle in the drift space
- (c) Input cavity voltage V_1 for max V_2
- (d) Voltage gain and efficiency (neglecting beam loading)

PART B

Answer any two full questions, each carries 15 marks.

- 4 a) Explain the different techniques used for measuring frequency at microwave (8) range.
 - b) Discuss the constructional features of magic tees and derive its S Matrix (7)
- 5 a) With neat diagram describe the constructional features and working principle of (7) a Travelling Wave Tube (TWT)
 - b) With a schematic diagram describe the operation of a four-port circulator. Obtain (8)
 the simplified S matrix of a perfectly matched, lossless four port circulator.
- 6 a) Explain the wave modes of Helix TWT. Prove that there are four waves existing (8) in a TWT
 - b) Explain the operation of hybrid rings. Derive its S matrix. How it differs from (7) magic tee?

PART C

Answer any two full questions, each carries 20 marks.

- 7 a) With necessary figures explain the physical structures of microwave bipolar (10) junction transistors.
 - b) Draw the block diagram of non-coherent MTI radar and explain the function of (10) each block in detail.
- 8 a) Explain the tunnel diode characteristics with aid of energy band diagram. (10)
 - b) Explain the basic principles of radar system. Derive the Radar range equation. (10)
 Explain the factors that affects the maximum range of a radar.
- 9 a) Explain Ridley–Watkins–Hilsum theory with the help of two valley model. (10)
 - b) Explain FM-CW Radar using sideband super heterodyne receiver. (10)

.