APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Sixth Semester B.Tech Degree Regular and Supplementary Examination July

Course Code: IC304

Course Name: DISCRETE TIME SIGNAL PROCESSING

	1.0	Course Name. DISCRETE TIME SIGNAL I ROCESSING	
Ma	x. M	Tarks: 100 Duration: 3	Hours
*		PART A	
		Answer any two full questions, each carries 15 marks.	Marks
1	a)	State and prove sampling theorem for band limited signals with necessary diagrams.	(10)
	b)	Define Nyquiste rate. What is the Nyquiste rate of a signal ranging 300 Hz to 3.3	(5)
		KHz?	
2	a)	Explain in detail about the significance of Decimator and Interpolator in Signal	(8)
		Sampling.	
	b)	Perform the circular convolution of $x_1(n) = \{1, 1, 2, 1\}$ and $x_2(n) = \{1, 2, 3, 4\}$	(7)
		in graphical method.	
3.	a)	Consider two finite duration sequences $x_1(n)$ and $x_2(n)$ of length N with	(12)
	*	DFTs $X_1(k)$ and $X_2(k)$. If $X_3(k) = X_1(k)X_2(k)$ then prove that	
		$x_3(n) = \sum_{m=0}^{N-1} x_1(m) x_2((n-m))_N$	
)	b)	List out any three properties of DFT.	(3)
		PART B	
		Answer any two full questions, each carries 15 marks.	
4	a)	What are the advantages of FFT algorithm?	(3)
	b)	Compute 8 point DFT of $x(n) = \{2, 2, 2, 2, 1, 1, 1, 1\}$ by radix-2 DIT FFT.	(12)
5	a)	Explain the procedure to compute the IDFT of the sequence using DIF FFT	(3)
	•	algorithm.	
	b)	Compute the IDFT of $X(k) = \{3, -j, 1, j\}$ using DIT FFT algorithm.	(4)
	c)	Write short notes on	(8)
		(i) Quantization Noise	
		(ii) Limit cycle oscillations.	

03000IC304052001

- 6 a) Realize the system with difference equation $y(n) = \frac{3}{4}y(n-1) \frac{1}{8}y(n-2) + (10)$ $x(n) + \frac{1}{3}x(n-1)$ in cascade form.
 - b) Determine the Direct form realization of system function $H(z) = 1 + 2z^{-1} (5)$ $3z^{-2} - 4z^{-3} + 5z^{-4}$

PART C

Answer any two full questions, each carries 20 marks.

- 7 a) Derive the expression for 3rd order butterworth polynomial. (10)
 - b) Reveal your idea about warping effect. (4)
 - c) Explain the steps to design a digital IIR filter using bilinear transform technique. (6)
- 8 a) For the analog transfer function $H(s) = \frac{3}{(s+2)(s+3)}$ determine H(z) using impulse (10) invariance method. Assume T=1 Sec.
 - b) Write short notes on (10)
 - (i) Kaiser window
 - (ii) Rectangular window
- 9 a) Design a filter with (15)

$$H_d(e^{j\omega}) = e^{-j\omega}$$
 for $\frac{-\pi}{4} \le \omega \le \frac{\pi}{4}$
= 0 for $\frac{\pi}{4} \le |\omega| \le \pi$

Using a Hanning window with N=7.

b) Explain the design procedure of FIR Filters using Fourier series method. (5)
