03000EC304052001

		FIS		(3)	B	
Reg No.:	Name:	D SIE		S	B	
APJ ABDUL KALA	M TECHNOLOGICAL UNIV	RSIT	x 88	التا	1	1
Sixth Semester B.Tech Degree	Regular and Supplementary Exam	nination	July 2021c	1	*//	
		lex.	ERUTHURY		!	

Course Code: EC304 Course Name: VLSI

		Course Name: VLSI	
M	ax. N	Marks: 100 Duration: 3	Hours
	1	PART A	
	- 3	Answer any two full questions, each carries 15 marks	Marks
1	a)	With a neat sketch, explain Czochralski crystal growth mechanism.	(8)
	b)	Explain the N-well CMOS IC Fabrication Sequence.	(7)
2	a)	a pre-deposition step, it is found that $5x10^{15}$ phosphorus atoms cm ⁻² are	
		introduced in a p-type silicon sample doped with 10 ¹⁶ acceptor atoms cm ⁻³ .	
		Calculate the junction depth, when the drive-in diffusion is performed at $1200^{0}\mathrm{C}$	
		for two hours. (D= $2.5 \times 10^{-12} \text{ cm}^2/\text{s}$ at 1200^0 C).	
	b)	With a neat sketch, explain the process of vapour phase epitaxy.	(8)
3	a)	Solve the Fick's law of diffusion, corresponding to pre-deposition diffusion and	(8)
		drive in diffusion.	
	b)	Explain the process of molecular beam epitaxy (MBE) in detail.	(7)
		PART B	
	9	Answer any two full questions, each carries 15 marks	
4	a)	Explain the various types of power dissipation in CMOS inverter.	(9)
	b)	Realize an XNOR gate using	(6)
		i. NMOS pass transistor logic	
		ii. Complementary pass transistor logic	
5	a)	Draw the circuit diagram, stick diagram and layout of a CMOS NOR gate	(8)
	b)	Implement the function Y= A'B+AB' and Z=AB+A'B' using pass transistor	(7)
		logic.	
6	a)	Explain the working of a transmission gate and implement 4×1 multiplexer using	(9)
		transmission gates.	
	b)	Implement the function Y=[(A+B)C+DE] [*] using static CMOS logic	(6)
		PART C	
		Answer any two full questions, each carries 20 marks	
7	a)	Explain the read and write operation of a six transistor CMOS SRAM cell.	(10)

03000EC304052001

	b)	With block diagrams, explain the working of linear carry select adder and square	
		root carry select adder.	
8	a)	Design a 4-bit × 4-bit NAND-based ROM array and explain its working.	(10)
	b)	With necessary diagrams and equations, explain the design of carry bypass	(10)
		adders	
9	a)	Draw a neat block diagram and discuss the operation of 4×4 bit-array multiplier.	(10)
	b)	Design a 4-bit × 4-bit NOR-based ROM array and explain its working.	(10)
	6	at a day day	