Reg No.:\_

Marke 100

0.37

11

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Third Semester B.Tech Degree Examination December 2020 (2019 Scheme)

# Course Code: ECT205 Course Name: NETWORK THEORY

| Ian. | Duratio                                                                                                                 | n: 3 Hour |
|------|-------------------------------------------------------------------------------------------------------------------------|-----------|
|      | PART A                                                                                                                  |           |
| 4    | Answer all questions. Each question carries 3 marks                                                                     | Marks     |
| 1    | Explain super mesh analysis                                                                                             | (3)       |
| 2    | Differentiate ideal and practical voltage sources.                                                                      | (3)       |
| 3    | State Reciprocity theorem                                                                                               | (3)       |
| 4    | What is the significance of Superposition theorem?                                                                      | (3)       |
| 5    | State initial value and final value theorem                                                                             | (3)       |
| 6    | Find expression for current when an unit impulse is given to a series RC circuit.                                       | (3)       |
| 7    | Is $\alpha_{12} = \frac{2s^2 + 5s + 1}{s + 7}$ a valid function? Justify.                                               | (3)       |
| 8    | What do you mean by open circuit natural frequency and short circuit natural frequency                                  | (3)       |
| 9    | What are image parameters?                                                                                              | (3)       |
| 10   | The impedance parameters of a two-port network are $\begin{bmatrix} 6 & 3 \\ 3 & 4 \end{bmatrix}$ . Find its admittance | (3)       |
|      | parameters.                                                                                                             |           |

#### PART B

Answer any one full question from each module. Each question carries 14 marks

## Module 1

a) Find I in the network shown using nodal analysis



b) Find voltage across  $6\Omega$  resistor using mesh analysis

(7)

(7)

ONAL

JR EN

## 0800ECT205122002



12 a) Find voltage across  $4\Omega$  resistor using nodal analysis



b) Determine current through 10<sup>Ω</sup> resistor using mesh analysis



# Module 2

a) Find current through 1.62 resistor using Thevenin's Theorem

» 13

1



# b) Determine current in $(2 + j3)\Omega$ impedance using superposition theorem



(7)

(7)

(7)

(7)

# 0800ECT205122002

14 a) Find value of  $R_L$  for maximum power transfer. Also find the maximum power (7) transferred.



b) Determine current through  $4\Omega$  resistor using superposition theorem.



#### Module 3

15

a) In the circuit, the switch is closed at t = 0, connecting a source  $e^{-t}$  to the RC circuit. At time t = 0, it is observed that capacitor voltage has the value  $V_c(0) = 0.5V$ . For the element values given, determine  $V_z(t)$  after converting the circuit into transformed domain.



b) Determine current flowing through the circuit shown for  $t \ge 0$ 



16

- a) Find the expression for current through a series RL circuit when a pulse input of (6) width T and amplitude A is applied across it
- b) For the circuit shown switch is closed at t = 0. Find currents  $i_1(t)$  and  $i_2(t)$  if (8) initial current through inductor is zero and initial voltage on capacitor is 4V

(8)

(6)

(7)

### 0800ECT205122002



#### **Module 4**

17

18

a) Obtain the time domain response of the given function using pole zero diagram (8)  $V(s) = \frac{(s+2)(s+6)}{(s+1)(s+5)}$ 

b) Explain the significance of poles and zeros with reference to driving point (6) functions and transfer functions.

- a) What are the necessary conditions for transfer function? (6)
- b) Determine driving point impedance Z<sub>11</sub>(s), transfer impedance Z<sub>21</sub>(s) and voltage transfer ratio G<sub>21</sub>(s) for the network shown
  (8)



### Module 5

19

a) Derive the conditions for reciprocity and symmetry for Z parameters and for (8) ABCD parameters.

b) Express g parameters in terms of h parameters and T parameters. (6)

a) Show that when two 2 port networks are connected in parallel, the resultant Y (6) matrix is the sum of Y matrices of each individual network.

(8)

b) Obtain short circuit admittance parameters of the circuit shown.



20