APJ ABDULKALAM TECHNOLOGICAL UNIVERSIT

08 PALAKKAD CLUSTER

Q. P. Code: IAR0820111-I

(Pages: 2)

Name:

Reg. No:

FIRST SEMESTER M.TECH. DEGREE EXAMINATION MARCH 202

Branch: Mechanical Engineering

space of M_{2X2} matrices.

Specialization: Industrial Automation and Robotics

08ME6311 ADVANCED MATHEMATICS AND OPTIMIZATION TECHNIQUES

Time: 2 hour 15 minutes

Max. Marks: 60

Answer all six questions.

Modules 1 to 6: Part 'a' of each question is compulsory and answer either part 'b' or part 'c' of each question.

Q.No. Module 1 Marks

1. Find a basis for the subspace $S = \{ (a, b, c) : b = a - 3c \}$ of R^3 .

3

6

Answer b or c

b Check whether the following matrices $\left\{\begin{bmatrix}2&1\\-2&-2\end{bmatrix},\begin{bmatrix}3&-3\\0&2\end{bmatrix},\begin{bmatrix}-5&0\\2&2\end{bmatrix},\begin{bmatrix}3&-3\\-2&2\end{bmatrix}\right\} \text{ form a basis for the vector}$

c Find the null space of the matrix $A = \begin{bmatrix} 1 & 0 & -2 & 6 \\ -3 & 6 & 6 & -6 \\ 2 & -3 & -4 & 6 \end{bmatrix}$ by finding a set of 6 vectors that span Null(A).

Q.No. Module 2 Marks

2. a Let L: $P_1 o P_2$ be defined by L[P(t)] = t P(t). Find the matrix L with respect to the bases S = {t, 1} and T = { t^2 , t, 1} for P_1 and P_2 , respectively. Using the matrix L, compute L[P(t)] if P(t) = 3t - 2.

Answer b or c

b Let L: $R^4 \rightarrow R^3$ be defined by $L(a_1, a_2, a_3, a_4) = (a_1 + a_2, a_3 + a_4, a_1 + a_3)$. **6** Find a basis for range L. Also verify Rank-Nullity theorem for the transformation L.

c Determine whether the linear map $T : \mathbb{R}^2 \to \mathbb{R}^2$ defined by T(x, y) = (x - y, x - 62y) is nonsingular. Is T invertible?

Q.No. Module 3 Marks

3. a Using the usual inner product, find a vector orthogonal to x = (-1, -1, 3) and y = (2, 3, -4) in \mathbb{R}^3 .

Answer b or c

- b Find an orthonormal basis for the vector subspace of R³ spanned by the vectors 6 (4, 0, 2), (3, -1, 5) and (0, 2, 1).
- Check whether the following is an inner product in R^2 : $\langle x, y \rangle = u_1 v_1 + 10u_2 v_2$ 6 where $x = (u_1, u_2)$ and $y = (v_1, v_2)$.
- Q.No. Module 4 Marks Solve the following problem graphically. 3

Maximise $z = 60 x_1 + 40x_2$ subject to $2x_1 + x_2 \le 60$, $x_1 \le 25$, $x_2 \le 35$ and $x_1, x_2 \ge 0$.

Answer b or c

- b Solve the following LPP using dual simplex method. Minimise $Z = 4x_1 + 2x_2$ 6 subject to $x_1 + 2x_2 \ge 20$, $3x_1 + x_2 \ge 30$, $4x_1 + 3x_2 \ge 60$ and $x_1, x_2 \ge 0$.
- Use the Simplex method to find the maximum value of Z = 3x + 2y subject to 6 $x+y \le 4$, $x-y \le 2$, and $x, y \ge 0$.
- Q.No. Module 5 Marks 5. a What is meant by integer programming? 4

Answer b or c

Solve the following linear programming problem by Gomory's cutting plane b 8 technique.

Max: $Z = 3x_2$ subject to the constraints $3x_1 + 2x_2 \le 7$; $-x_1 + x_2 \le 2$; $x_1, x_2 \ge 0$ and are integers.

C Use branch and bound method to solve the following. 8

Max: $Z = 6x_1 + 8x_2$ subject to the constraints $4x_1 + 16x_2 \le 32$; $14x_1 + 4x_2 \le 28$; x_1 , $x_2 \ge 0$ and are integers.

Q.No. Module 6 Marks 6. a What do you understand by Quadratic programming? Explain briefly.

Answer b or c

- Using Kuhn Tucker conditions Maximise: $Z = -x^2 y^2 z^2 + 4x + 6y$ b 8 subject to the constraints $x_1 + x_2 \le 2$; $2x_1 + 3x_2 \le 12$ with $x_1, x_2 \ge 0$.
- Minimize $f = x^2 + y^2 + z^2$ subject to 2x + y z = 1 by the Lagrange C 8 multiplier method.