

FIRST SEMESTER M.TECH. DEGREE EXAMINATION MARCH 2021

Branch: Electronics & Communication Engineering Specialization: Communication Engineering

& Signal Processing

08EC6231/08EC6531 Advanced Digital Signal Processing

(Common to CESP and ECE)

Time: 2 hour 15 minutes

Max. Marks: 60

Answer all six questions.

Modules 1 to 6: Part 'a' of each question is compulsory and answer either part 'b' or part 'c' of each question.

Q.no.	Module 1	Marks
1.a	Write short notes on the use of window function with relevant equations	3
	Answer b or c	
b	Explain the effects of finite word length in FIR filter design	6
c	Design an FIR filter with, Hd (ejw) = e-j3w - $\pi/4 \le w \le \pi/4$	6
	$=0$ $\pi/4 \leq w \leq \pi$	
	Using Hamming window with N=7	
Q.no.	Module 2	Marks
Q.no. 2.a	Module 2 Explain bilinear transformation method of conversion from analog to digital transfer function	Marks 3
	Explain bilinear transformation method of conversion from analog to	
	Explain bilinear transformation method of conversion from analog to digital transfer function	
2.a	Explain bilinear transformation method of conversion from analog to digital transfer function	3
2.a	Explain bilinear transformation method of conversion from analog to digital transfer function	3

Q.no.	Module 3	Marks	
3.a	State and prove the noble identities in multi-rate signal processing	3	
	Answer b or c		
b	Derive the equation for upsampling using factor I	6	
c	Implement decimation system using a polyphase structure	6	
. 7. 1			
Q.no.	Module 4	Marks	
4.a	Discuss the relation between power spectral density and autocorrelation function	3	
Answer b or c			
b	Prove that periodogram is not a consistent estimate of true power density spectrum and briefly explain the significance of DFT in power spectrum estimation	6	
¢	Explain the estimation of power spectrum using Blackman and Tukey method	6	
Q.no.	Module 5	Marks	
5.a	Differentiate parametric from nonparametric power spectral estimation	4	
÷.	Answer b or c		
b	Derive the equation for Yule-Walker equation	8	
c	Explain in detail about ARMA Model for power spectrum estimation	8	
Q.no.	Module 6	Marks	
6.a	Briefly explain the time-dependent Fourier analysis of radar signals	4	
Answer b or c			
b	Explain the Fourier analysis of speech and Radar signals.	8	
c	Explain the Fourier analysis of stationary signals using a periodogram.	8	
	, , , , , , , , , , , , , , , , , , ,		

K.

1