APJ ABDULKALAM TECHNOLOGICAL UNIVERSI 08 PALAKKAD CLUSTER

Q. P. Code: CESP0820151B-I (Pages: 2) Reg. No:....

FIRST SEMESTER M.TECH. DEGREE EXAMINATION MARCH 2021

Branch: Electronics & Communication

Specialization: Communication Engineering

Engineering

& Signal Processing

08EC6251(B) Adaptive Signal Processing

(Common to CESP and ECE)

Time: 3 hours

Max. Marks: 60

Answer all six questions.

Modules 1 to 6: Part 'a' of each question is compulsory and answer either part 'b' or part 'c' of each question.				
Q.no.	Module 1	Marks		
1.a	What is the significance of Performance Surface?	3		
Answer b or c				
ь	Compare various adaptive linear predictors.	6		
c	Derive an expression for Minimum MSE using Gradient Method.	6		
	-			
Q.no.	Module 2	Marks		
2.a	What are linear optimum filters? Explain the statistical approaches of linear filters.	3		
Answer b or c				
b	Derive Wiener-Hopf Equation.	6		
c	Consider a Wiener filtering problem characterized as follows: The correlation matrix R of the tap-input vector $\mathbf{u}(\mathbf{n})$ is $R = \begin{bmatrix} 1 & 0.5 \\ 0.5 & 1 \end{bmatrix}$. The cross-correlation	6		
	vector between the tap-input vector u(n) and the desired response d(n) is			
*	$P = \begin{bmatrix} 0.5 \\ 0.25 \end{bmatrix}$. Evaluate the tap weights of the Wiener filter.			

Q.no.	Module 3	Marks
3.a	What is the significance of learning curve?	3
	Answer b or c	
b	Discuss any gradient search method to get the optimum error.	6
c	Explain Misadjustment in Excess Mean Square Error.	6
Q.no.	Module 4	Marks
4.a	Propose an ideal adaptive algorithm.	3
	Answer b or c	
b	Explain the properties of LMS/Newton Algorithm.	6
c	Explain LMS algorithm.	6
Q.no.	Module 5	Marks
5.a	Propose an adaptive modelling with and without noise.	4
T K	Answer b or c	
b	Design a multipath communication channel with Adaptive modelling?	8
C t	Explain the Adaptive modelling for FIR filter synthesis.	8
Q.no.	Module 6	Marks
6.a	What is inverse adaptive modelling?	4
	Answer b or c	
b	Describe the adaptive equalizers in telephone channel	8
c	Explain IIR filter synthesis by the equation error	8