APJ ABDULKALAM TECHNOLOGICAL UNIVERSITY **08 PALAKKAD CLUSTER**

Q. P. Code : PE0820111-I

(Pages: 2)

Reg. No:

FIRST SEMESTER M.TECH. DEGREE EXAMINATION MARCH 2021

Branch: Electrical and Electronics Engineering

08EE6211 APPLIED MATHEMATICS

Time: 2 hour 15 minutes

b

Answer all six questions.

Modules 1 to 6: Part 'a' of each question is compulsory and answer either part 'b' or part 'c' of each question.

Q.no.	Module 1	Marks
1.a	Determine whether the polynomial $P(x) = 1 + 2x + 3x^2$ is a linear combination of the polynomials $P_1(x) = -2 + x$, $P_2(x) = 2x + x^2$, $P_3(x) = 1 - x - x^2$	3
	Answer b or c	
b	Find the eigen values and eigen vectors of A = $\begin{bmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{bmatrix}$	6
C	Let W be the subspace of R ⁴ spanned by $x_1 = (1,2,1,-2)$, $x_2 = (2,3,2,-3)$ and $x_3 = (2,5,2,-5)$. Find a basis for W and the dimension of W.	6
Q.no.	Module 2	Marks
2.a	Solve the differential equation $(\sin y + y\cos y) dy = x(2\log x + 1) dx$.	3
i.		

Answer b or c

Determine the overall solution of the differential equation given below.

$$(1+x)^2 \frac{d^2y}{dx^2} + (1+x)\frac{dy}{dx} + y = 2\sin\log(1+x).$$

Solve the differential equation $x^2 \frac{d^2y}{dx^2} + 4x \frac{dy}{dx} + 2y = e^x$. C

Specialization: Power Electronics

Max. Marks: 60

6

6

Q.no.	Module 3	Marks	
3.a	State dirichlet's condition for the existence of fourier series with examples	3	
	Answer b or c		
b	Find the fourier series to represent $x - x^2$ from $-\pi$ to π	6	
c	Express $f(x)=1$ for $0 \le x \le \pi$	6	
	0 for $x > \pi$ as fourier sine integral and hence evaluate $\int_0^\infty \frac{1 - \cos \lambda \pi}{\lambda} \sin \lambda x d\lambda$		
< Q.no.	Module 4	Marks	
4. a	Show the polar form of Cauchy Riemann Equation	3	
Answer b or c			
b	Integrate $f(z)=x^2 + ixy$ from A(1,1) to B(2,4) along x=t and y=t^2	6	
с	State and prove Cauchy's integral theorem. Hence evaluate $\oint \frac{e^z}{(z^2 + \pi^2)^2} dz$ over $ z =4$	6	
Q.no.	Module 5	Marks	
5.a	Find the Laurent's series expansion of $\frac{1}{Z^3 - z^4}$ with center 0	4	
Answer b or c			
` Ъ	Using Cauchy's residue theorem evaluate $\oint \frac{30z^2-23z+5}{(2z-1)^2(3z-1)}$ where C is $ z = 1$.	8	
c	What is the image of the line $x=c$ under the transformation $w=cos \ z$. what is	8	

1

Q.no. Module 6 Marks The second 6.a Give the different classification of optimization problems with examples. 4 Answer b or c b Explain in detail Gomory cutting plane method for integer programming 8 problems with an example. Ċ Use branch and bound method to solve the following LPP. 8 Maximize $z = 6x_1+8x_2$ subject to the constraints $4x_1 + 16x_2 \le 32$, $14x_1+4x_2 \le 32$ 28, $x_1, x_2 \ge 0$ and are integers

the image of the line y=k

2