

# **APJ ABDULKALAM TECHNOLOGICAL UNIVERSITY**

08 PALAKKAD CLUSTER

Q. P. Code: TE0820105-I

(Pages: 5)

Reg. No:....

# FIRST SEMESTER M.TECH. DEGREE EXAMINATION MARCH 2021

**Branch: Civil Engineering** 

Specialization: Transportation Engineering

#### **08CE6205 Urban Transportation**

(Common to TE)

Time: 2 hour 15 minutes

Max. Marks: 60

Answer all six questions.

Modules 1 to 6: Part 'a' of each question is compulsory and answer either part 'b' or part 'c' of each question.

| Q.no.      | Module 1                                                                   | Marks |
|------------|----------------------------------------------------------------------------|-------|
| <b>1.a</b> | Define objectives and constraints with respect to transportation planning. | 3     |
|            | Answer b or c                                                              |       |
| b          | What is travel demand? How will you forecast travel demand?                | 6     |
| с          | Elaborate on the aspects of transportation problems.                       | 6     |
|            |                                                                            |       |

#### Q.no.

#### Module 2

Marks

3

6

**2.a** Explain the term 'trip generation rates'.

## Answer b or c

b

A small study area represented by 10 traffic analysis zones (TAZ) has the following characteristics:

| Zone                 | 71  | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  |
|----------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Trips<br>Productions | 600 | 630 | 900 | 850 | 750 | 290 | 570 | 600 | 450 | 450 |
| Car<br>ownership     | 500 | 320 | 710 | 615 | 280 | 130 | 400 | 470 | 250 | 200 |

Use the method of least squares to develop the regression model for predicting trip productions as a function of car ownership in a TAZ. Calculate the  $R^2$  discuss on the reliability of the model.

| Household No. | Trips per day | Annual income<br>(in 1000 Rs.) | Number of<br>Autos |
|---------------|---------------|--------------------------------|--------------------|
| 1             | 2             | 40                             | 0                  |
| 2             | 4             | 50                             | 0 -                |
| 3             | 10            | 170                            | 2                  |
| 4             | 5             | 110                            | 0                  |
| 5             | 5             | 60                             | 1                  |
| 6             | 15            | 180                            | 3                  |
| 7             | 7             | 95                             | 1                  |
| 8             | 4             | 90                             | 0                  |
| 9             | 6             | 70                             | . 1                |
| 10            | 13            | 200                            | 3                  |

# Develop trip generation model for the following data.

# Q.no.

b

C

## Module 3

Marks 3

3.a Differentiate between trip end and trip interchange models.

# Answer b or c

Estimate the future distribution by Furness Method (up to 2 iterations) from the 6 following trips table (trips in 10s).

| O/D          | 1  | 2  | 3  | 4  | Future Trips |
|--------------|----|----|----|----|--------------|
| 1            |    | 5  | 6  | 3  | 28           |
| 2            | 4  | -  | 7  | 2  | 39           |
| 3 1          | 2  | 6  | -  | 4  | 30           |
| 4            | 5  | 7  | 3  | -  | 22           |
| Future trips | 20 | 50 | 34 | 15 |              |



c Trip production, trip attraction and travel time for a 3-zone study area as give below.

| Zone            | 1   | 2   | 3   |
|-----------------|-----|-----|-----|
| Trip Production | 210 | 320 | 240 |
| Trip Attraction | 290 | 270 | 210 |

Travel time versus friction factor values as obtained from the calibration process is summarized below.

| Time(min) | Friction factor | Time(min) | Friction factor |
|-----------|-----------------|-----------|-----------------|
| 1         | 82              | 5         | 39              |
| 2         | 52              | 6         | 26              |
| 3         | 50              | 7         | 20              |
| 4         | 41              | 8         | 13              |

Determine the number of trips between each zone using a gravity model. Socio economic adjustment factors may be assumed as unity. Show only 2 iterations.

Q.no.

#### Module 4

# Marks 3

6

4.a Explain (any two) diversion curves for the estimation of mode split.

## Answer b or c

- **b** Given the utility equation  $Uk=a_k 0.003X_1 0.04 X_2$  where  $X_1$  is the travel cost in cents and  $X_2$  is the travel time in minutes.
  - (i) Calculate the market shares of the following travel modes by logit model formulation.

| Mode k      | a <sub>k</sub> | X1  | <b>X</b> <sub>2</sub> |
|-------------|----------------|-----|-----------------------|
| Automobile  | -0.20          | 120 | 30                    |
| Express Bus | -0.40          | 60  | 45                    |
| Regular Bus | -0.60          | 30  | 55                    |

(ii)

Estimate the effect that a 50% increase in the cost of all three modes will have on mode split.

A calibrated utility function for travel in a medium sized city by automobiles, bus and light rail is U = a - 0.002 X1 - 0.05 X2 where X1 = cost of travel in cents and X2 = travel time in cents.

| Mode       | Α     | X1  | X2 |
|------------|-------|-----|----|
| Automobile | -0.30 | 130 | 25 |
| Bus        | -0.35 | 75  | 35 |
| LRT        | -0.40 | 90  | 40 |

Calculate the modal split for the given values.

Suppose a new mode, a Rapid Transit (RT) is introduced in the city. Service attributes for the new mode are X1= 50, X2 = 30; Find the market shares of four modes. The constant for new mode is -0.6.

# Q.no.

b

C

#### Module 5

Marks 4

4

5.a Explain Capacity Restraint Assignment.

#### Answer b or c

The description of a network (2-way links) is given below. Find minimum 8 path from node A to B, C and D using minimum path algorithm.

| Links    | Travel<br>Time(min) | Links  | Travel<br>Time(min) |
|----------|---------------------|--------|---------------------|
| 1 to 2   | 13                  | 4 to 7 | 17                  |
| 1 to A   | 14                  | 5 to 6 | 17                  |
| 1 to 4   | 13                  | 5 to 8 | 18                  |
| , 2 to 3 | 14                  | 6 to 9 | 19                  |
| 2 to 5   | 14                  | 7 to 8 | 20                  |
| 3 to B   | 13                  | 7 to C | 15                  |
| 3 to 6   | 22                  | 8 to 9 | 22                  |
| 4 to 5   | 15                  | 9 to D | 14                  |

6



Assign the vehicle trips shown in the following O-D trip table to the network (link data - travel times on links given in table), using the all-or-nothing assignment technique.

| From/to | . 1 | 2   | 3   | 4   |
|---------|-----|-----|-----|-----|
| 1       | -   | 500 | 75  | 350 |
| 2       | 75  | -   | 105 | 75  |
| 3       | 50  | 70  |     | 90  |
| 4       | 250 | 350 | 50  | -   |

| Links  | Travel<br>Time(min) | Links  | Travel<br>Time(min) |
|--------|---------------------|--------|---------------------|
| 1 to 2 | 9                   | 2 to 3 | 10                  |
| 2 to 1 | 6                   | 3 to 2 | 5                   |
| 4 to 1 | 4                   | 3 to 4 | 6                   |
| 1 to 4 | 1                   | 4 to 3 | 5                   |

## Q.no.

1

1

С

#### Module 6

Marks

| 6.a | Explain any two-transportation planning softwares.                                      |   |  |  |
|-----|-----------------------------------------------------------------------------------------|---|--|--|
|     | Answer b or c                                                                           |   |  |  |
| b   | Elaborate on various indicators used to assess the performance of a transport corridor. | 8 |  |  |
|     |                                                                                         |   |  |  |

Elaborate on various applications of Geographical Information Systems in **8** transport sector.

5