0800MRT203122001

Reg No.:_

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Third Semester B. Tech Degree Examination December 2020 (2019 Scheme)

Course Code: MRT203

Course Name: ANALOG AND DIGITAL ELECTRONICS

Max. Marks: 100

Duration: 3 Hours

ages:

PART A

	Answer all questions. Each question carries 3 marks	Marks
1	Differentiate between amplifier and oscillator.	(3)
2	Briefly explain the concept of feedback.	(3)
3	With neat sketch explain the frequency response of op-amp.	(3)
4	Discuss with waveform how op-amp operates as a comparator in inverting	(3)
	mode.	
5	Write a short note on wide band pass filter with neat circuit diagram.	(3)
6	Summarize the following	(3)
	a) Lock range	
	b) Capture range-	
7 :	Design a Half Adder circuit and explain briefly.	(3)
8	Using K-map simplify the Boolean expression $Y = A\overline{B}C + \overline{A}BC + \overline{A}\overline{B}C + \overline{A}\overline{B}C$	(3)
	$\overline{AB}\overline{C} + A\overline{B}\overline{C}$	
9	Distinguish between synchronous and asynchronous circuits.	(3)
10	Explain the D flip flop with logic circuit and truth table.	(3)

PART B

Answer any one full question from each module. Each question carries 14 marks

Module 1

- 11 a) Derive an expression for the frequency of Hartley Oscillator and explain (6) briefly.
 - b) Elaborate in detail about class B push pull amplifier with a neat circuit diagram (8) and find out the efficiency.

С

0800MRT203122001

	12	a)	Describe how N-channel JFET is constructed. Explain how pinch off occurs in	(8)
			JFET.	
2		b)	What are the advantages of the FET and BJT?	(6)
			Module 2	
	13	a)	Discuss about various methods to convert Voltage to current (V to I) using Op-	(5)
			Amp.	
T .,		b)	Illustrate the following	(9)
	1		(i) Sample and Hold (S/H) circuit	
	1.1		(ii) Inverting Comparator	
		~	(iii) Non Inverting Comparator	
	14	a)	Show that how we can use op-amp for integration.	(5)
į		b)	With suitable diagrams explain in detail about regenerative comparator.	(9)
120			Module 3	
	15		With suitable diagram explain IC 555 Timer as an Astable multivibrator.	(14)
	16	a)	Derive the expression for the gain for a first order active LPF. Sketch the	(9)
			frequency response plot.	
		b)	Explain the block schematic of PLL.	(5)
			Module 4	
	17	a)	State and prove Demorgan's theorem.	(4)
	·	b)	Explain the working of an Octal to Binary (8 to 3) Encoder with a neat diagram	(10)
			and truth table.	
,)	18		Using Quine McCluskey method simplify $f(A,B,C,D) = \sum m(0,1,3,7,8,9,11,15)$	(14)
			Module 5	
	19		Design a sequence detector that produces an output "1" whenever the non-	(14)
			overlapping sequence 1101 is detected.	
	20	a)	Describe in detail about 4 bit Serial In Serial Out (SISO) shift register using	(7)
			negative edge triggered D Flip Flop.	
		b)	Design an Asynchronous UP counter and explain using timing diagram and	(7)
			truth table	
