00000EC303121903

Reg No.:

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Fifth Semester B.Tech Degree Regular and Supplementary Examination December 2020

Course Code: EC303

Course Name: APPLIED ELECTROMAGNETIC THEORY

Max. Marks: 100

Duration: 3 Hours

(7)

(8)

PART A

Answer any two full questions, each carries 15 marks. Marks

- 1 a) Derive the expression of energy stored in electric field.
 - b) Four 10-nC point charges are located in the z=0 plane at the corners of a square (8)
 8cm on a side. A fifth 10-nC positive charge is located at a point 8cm distant from each of the other charges. Calculate the magnitude of the total force on the fifth charge for ε = ε₀.
- 2 a) Derive the boundary conditions of electric field and magnetic field from (6)
 Maxwell's equations at the interface of dielectric-dielectric medium.
 - b) A lossy dielectric has an intrinsic impedance of 50∠10° Ω at a particular (9) frequency. If at that frequency, the plane wave propagating through the dielectric has the magnetic field component H = 10e^{-αy} cos(ωt 5y) a_x A/m find (i) E (ii) α (iii) Skin depth
- 3 a) State Maxwell's equations in differential form, integral form and mention the (7) laws from which each of the equation is derived.
 - b) Derive Continuity equation.

PART B

Answer any two full questions, each carries 15 marks.

- 4 a) Derive the expression for reflection and transmission coefficients field when a (7) plane wave having parallel polarization is incident obliquely at an angle θ_i on the boundary (z plane) at x=0 between medium 1 (z<0) characterized by μ₁, ε₁, σ₁ and medium 2 (z>0) characterized by μ₂, ε₂, σ₂.
 - b) A 100 Ω lossless line is terminated by unknown load impedance Z_L . If at a (8) distance 0.2 λ from the load the voltage is $V_S = 1 + 2j V$ while the current is 5mA. Find the load impedance and VSWR.

00000EC303121903

- 5 a) Derive the expression for volatege, current and input impedance of a (7) transmission line at a distance l from load impedance Z_L
 - b) An electromagnetic wave travelling in free space has (8) $E = (5a_y + 2a_z)\cos(\omega t + 2y - 4z) V/m$. Determine (i) ω (ii) λ (iii) The magnetic field component (iv) The time average power.
- 6 a) State Poynting Theorem. Derive the expression for complex Poynting vector. (9)
 - b) The propagation constant of a lossy transmission line is $(1 + 2j)m^{-1}$ and its (6) characteristic impedance is 100Ω at $\omega = 10^6$ rad/s .What are the values of L, C, R and G?

PART C

Answer any two full questions, each carries 20 marks.

1

- 7 a) If we want to calculate an impedance at 0.4λ from the load using smith chart, (8) how much degree should we move from the load in the smith chart?
 - b) Consider a 50Ω , quarter-wave long transmission line at 2GHz. It is connected to (12) a 5V, 10Ω source at one end and is left open circuited at the other end. Calculate the magnitude of voltage at the open circuit end.
- 8 a) Derive expression for TM mode in rectangular wave guide. (10)
 - b) A 50+j75 Ω load is connected to 100 Ω lossless line. Using smith chart find (10) (i) Reflection coefficient (ii) Standing Wave Ratio (iii) The load admittance Y_L (iv) Z_{in} at 0.5 λ from the load.
- a) Derive expression for TE mode in rectangular wave guide. (10)
 - b) Consider a TM₁₃ propagating inside a rectangular waveguide having a=5cm, (10)
 b=6cm, σ = 0, μ = μ₀, ε = 9ε₀ and H_x = 9sin(πx/a)cos(3πy/b)sin(2π × 10¹¹t βz) A/m. Determine (i)The cut-off frequency (ii) The phase constant (iii) The propagation constant (iv) The intrinsic impedance
