02000EE201092003

Reg No.:

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERST

Third Semester B.Tech Degree (S,FE) Examination Decemb

Course Code: EE201

Course Name: CIRCUITS AND NETWORKS

PART A

Max.	Marks:	100

1

Duration: 3 Hours

		Answer all questions, each carries 5 marks.	Marks
1	×	State and explain maximum power transfer theorem as applicable to AC networks	(5)
		with load $Z_L = R_L + jX_L$.	
2		List any three properties of incidence matrix associated with graph theory.	(5)
3		Define time constant and explain its significance.	(5)
4	.*	Explain the terms magnetic coupling and dot convention.	(5)
5		Explain open circuit parameters of a 2 port network.	(5)
6		State the conditions a 2 port network to be reciprocal with respect to z, y, h, ABCD	(5)
		parameters.	
7		State the conditions for a polynomial to be Hurwitz.	(5)
8		Write any five properties of impedance function of RL network.	(5)

PART B

Answer any two full questions, each carries 10 marks.

Determine the load current I_L by using Norton's theorem.

10 a) State and explain superposition theorem.
b) A reduced incidence matrix of a graph is given by Obtain number of possible trees.

$$[A] = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 1 \\ 0 & -1 & 1 & -1 & 0 & 0 \\ -1 & 0 & -1 & 0 & -1 & 0 \end{bmatrix}$$

11

For the graph shown below, select a tree with [1, 2, 3, 4] as twigs and [5, 6, 7] as (10)

B

(5) (5)

(10)

02000EE201092003

links. Obtain fundamental tie-set and cut-set matrices for the graph.

PART C Answer any two full questions, each carries 10 marks.

Determine the current i(t) when the switch is moved from position 1 to position 2 at (10) t=0. The switch has been in position 1 for a long time to get steady state values.

Derive expression for transient current in a RL series circuit excited with i) DC (10) voltage and ii) AC sinusoidal voltage by applying Laplace transform.

14 a) Two inductively coupled coils have self inductances $L_1 = 50$ mH and $L_2 = 200$ mH. (5)

- i) Find the value of mutual inductance between coils if the coefficient of coupling is 0.5.
- ii) What is the maximum possible mutual inductance?
- b) Plot the transient response of RLC series circuit for various damping conditions with (5) DC excitation.

PART D

Answer any twofull questions, each carries 10 marks.

15 a) Find Z parameters of the given two port network. The impedances are $Z_1=5k\Omega$, (6) $Z_2=3k\Omega$, $Z_3=12k\Omega$.

12

13

02000EE201092003

b) Given $Z_{11} = 6\Omega$, $Z_{22} = 4\Omega$, $Z_{12} = Z_{21} = 3\Omega$. Compute ABCD parameters. (4) 16 a) Determine hybrid parameters. Given , $Z_A = Z_B = Z_C = 1k\Omega$ (5)

b)	Check whether the polynomial $P(S) = S^4 + S^3 + 2S^2 + 4S + 1$ is Hurwitz.	(5)
	Driving point impedance is given by $Z(s) = \frac{s(s^2+4)(s^2+6)}{(s^2+1)(s^2+5)}$	(10)
C		

Obtain first form of Cauer Network.

17