02000CS201092002

Reg No.:

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Third Semester B.Tech Degree (S,FE) Examination December 2020

Course Code: CS201

Course Name: DISCRETE COMPUTATIONAL STRUCTURES

Max. Marks: 100

Duration: 3 Hours

G

Page

s: 2

		PART A			
		Answer all questions, each carries 3 marks.	Marks		
1		Draw the Hasse diagram of posets under the partial order relation of divisibility $A=\{1,2,3,5,6,10,15,30\}$	(3)		
2		Determine whether the relation $R=\{(a,b) a \ge b\}$ on the set of real numbers is an equivalence relation.	(3)		
3		In how many ways can letters in the English alphabet be arranged so that there are exactly 7 letters between the letters 'a' and 'b'.	(3)		
4		Among the first 500 positive integers, determine the integers which are not divisible by 2, nor by 3, nor by 5.	(3)		
		PART B			
Answer any two full questions, each carries 9 marks.					
5	a)	Let $f(x)=x+2$, $g(x)=x-2$ and $h(x)=3x$ for $x \in R$, where R is the set of real numbers. Find gof, fog, fof, gog, foh, hog, hoh and fohog	(4)		
	b)	If the function f is defined by $f(x) = x^2 + 1$ on the set {-2, -1, 0, 1, 2}, find the range of f.	(5)		
6	a)	Show that the set N of natural numbers is a semigroup under the operation $x^*y = max(x,y)$. Is it a monoid?	(4)		
	b)	8 scientists and 5 politicians take part in a conference. In how many ways can they be seated in a single row if (i) no 2 politician must sit together (ii) no 2 scientist must sit together.	(5)		
7	a)	Solve the recurrence relation $a_n = 6 a_{n-1} - 9 a_{n-2}$, $n \ge 2$ and $a_0 = 1$ and $a_1 = 4$	(5)		
	b)	Show that A X (B \cap C) = (AXB) \cap (AXC).	(4)		
		PART C			
		Answer all questions, each carries 3 marks.			
8		Define group homomorphism.	(3)		
9		How many proper subgroups will be there for a group of order 11? Justify your Answer.	(3)		
10		Let (L,\leq) be a lattice and a,b,c,d elements of L. Prove that if $a\leq c$ and $b\leq d$ then $a \lor b \leq c \lor d$	(3)		
11		Define a complemented lattice. Give an example.	(3)		

02000CS201092002

PART D

12	a)	Answer any two full questions, each carries 9 marks. What is a complete lattice? Give an example.	(4)
	b)	Show that the set of all positive rational numbers O+ forms an abelian group	(5)
		under the operation * defined by $a*b=(ab)/2$ for $a,b \in Q+$.	
13	a)	Define a Boolean algebra. Illustrate a two element Boolean Algebra with an example.	(4)
	b)	Let $H = \{0, 3, 6\}$ in Z_9 under addition. What are the cosets of H in Z_9 ?	(5)
14	a)	Verify that the set{ 0, 1, 2, 3, 4, 5 } under addition and multiplication modulo 6 is group or not.	(4)
1	b)	A= $\{2, 3, 4, 6, 12, 18, 24, 36\}$ with partial order of divisibility. Determine whether the POSET is a lattice or not.	(5)
	~	PART E	
15	a)	Answer any four full questions, each carries 10 marks. Without using truth tables prove that $l(P \land Q) \rightarrow (lP \lor Q) \iff (lP \lor Q) \iff (lP \lor Q)$	(5)
	b)	Suppose x is a real number. Consider the statement "If $x^2 = 4$, then $x = 2$." Construct the converse, inverse, and contrapositive.	(5)
16	a)	Prove that $p v (q \land r)$ and $(p v q) \land (p v r)$ are logically equivalent.	(5)
	b)	Prove that $(\exists x) (P(x) \land Q(x)) \Longrightarrow (\exists x) P(x) \land (\exists x) Q(x).$	(5)
17	a)	Show that the premises "A student in this class has not read the book " and "Everyone in this class passed the first exam " imply the conclusion "Someone who passed the first exam has not read the book".	(5)
5	b)	Show that the premises, " It is not sunny this afternoon and it is colder than yesterday", "We will go swimming only if it is sunny", " If we do not go swimming, then we will take a canoe trip", and " If we take a canoe trip , then we will be home by sunset " lead to the conclusion " We will be home by sunset ".	(5)
18	a)	Show that (x) ($P(x) \rightarrow Q(x)$) \land (x) ($Q(x) \rightarrow R(x)$) => (x) ($P(x) \rightarrow R(x)$)	(5)
	b)	Show that $R \land (P \lor Q)$ is a valid conclusion from the premises $P \lor Q$, $Q \rightarrow R$, $P \rightarrow M$ and $\neg M$.	(5)
19	a)	Show that $(\exists x) M(x)$ follows logically from the premises $(x) (H(x) \rightarrow M(x))$ and $(\exists x) H(x)$	(5)
	b)	Show that $((P \rightarrow Q) \land (Q \rightarrow R)) \rightarrow (P \rightarrow R)$ is a tautology.	(5)
20	a)	Prove by contradiction "If $3n + 2$ is an odd integer, then n is odd ".	(5)
	b)	Show that S V R is tautologically implied by $(P \lor Q) \land (P \to R) \land (Q \to S)$	(5)

*

.1