0800MAT201122001

Reg No.:_____

A

18

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Third Semester B. Tech Degree Examination December 2020 (2019 Scheme

Course Code: MAT201

		Course Name: Partial Differential equations and Complex analysis		
N	lax. Mar	ks: 100 Duration: 3	Hours	
	, j	PART A Answer all questions. Each question carries 3 marks	Marks	
*	1	Derive a partial differential equation from the relation $z = (x + y) f(x^2 - y^2)$	(3)	
	2	Solve using direct integration $\frac{\partial^2 u}{\partial x \partial t} = e^{-t} cos x$	(3)	
	3	Solve $2z=xp+yq$.	(3)	
	4	Write any three assumptions in deriving one dimensional heat equation.	(3)	
	5	Show that an analytic function $f(z) = u+iv$ is constant if its real part is constant.	(3)	
	6	Show that the function $u = \sin x \cos hy$ is harmonic.	(3)	
	7	Find the Maclaurin series of $f(z) = \sin z$	(3)	
	8	Evaluate $\oint_C \ln z dz$, where C is the unit circle $ z = 1$.	(3)	
	9	Find all singular points and residue of the function cosec z	(3)	
	10	Determine the location and order of zeros of the function $sin^4(\frac{z}{2})$	(3)	
	An	PART B swer any one full question from each module. Each question carries 14 marks	5	
		Module 1		
	11 (a)	Form the Partial differential equation by eliminating the arbitrary constants	(5)	
		from $(x-a)^2 + (y-b)^2 = z^2 \cot^2 \alpha$		
	(b)	Solve $2xz - px^2 - 2qxy + pq = 0$	(9)	
	12 (a)	Solve $\frac{\partial^3 z}{\partial^2 x \partial y} = \cos(2x+3y)$	(7) (7)	
	(0)	Solve $x^2 (y-z)p + y^2 (z-x)q = z^2 (x-y)$		
Module 2				
	13 (a)	Derive the solution of the one dimensional wave equation $\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2}$	(6)	

using variable separable method.

(b) An insulated rod of length 1 has its ends A and B maintained at 0° C and

0800MAT201122001

100° C respectively until steady state conditions prevail. If B is suddenly (8) reduced to 0° C and maintained at 0° C, find the temperature at a distance x from A at time t.

- Derive the one dimensional heat flow equation. 14(a)(6)
 - (b) A tightly stretched string of length l with fixed ends is initially in equilibrium position .If it is set vibrating by giving each points a velocity (8) $v_0 sin^3(\frac{\pi x}{l})$. Find the displacement y(x,t).

Module 3

15 (a)	Find an analytic function whose real part is u = sinx coshy	(7)
(\mathbf{h})		(7)

- Find the image of the strip $\frac{1}{2} \le x \le 1$ under the transformation w = z^2 (b)
- 16(a)Check whether $w = \log z$ is analytic. (8) Show that under the transformation $w = \frac{1}{z}$, the circle $x^2 + y^2 - 6x = 0$ is (b) (6)

transformed into a straight line in the W plane.

Module 4

- 17 (a) (7) Integrate counter clockwise around the unit circle $\oint_C \frac{\sin 2z}{z^4} dz$ (b)
- Find the Taylor series of $\frac{1}{1+z}$ about the centre $z_0 = i$ (7)18 (a)
 - Evaluate $\int_0^{1+i} (x y + ix^2) dz$ along the parabola $y = x^2$. (7) (b) Evaluate $\oint_c \frac{\log z}{(z-4)^2} dz$ counter clockwise around the circle |z-3|=2. (7)

Module 5

19 (a) Find the Laurent's series expansion of $\frac{z^2-1}{z^2-5z+6}$ about z=0 in the region (5) 2 < |z| < 3

(b)
Evaluate
$$\int_0^{2\pi} \frac{d\theta}{\sqrt{2} - \cos\theta}$$
. (9)

20 (a) Evaluate $\oint_C \frac{z-23}{z^2-4z-5} dz$ where C : |z-2-i| = 3.2 using Residue (5) theorem.

(b) Evaluate
$$\int_0^\infty \frac{(x^2+2)dx}{(x^2+1)(x^2+4)}$$
. (9)