0800MAT203122001

Reg No.:

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSIT

Third Semester B.Tech Degree Examination December 2020 (2019 Scheme

Course Code: MAT203

Course Name: Discrete Mathematical Structures

Max. Marks: 100

Duration: 3 Hours

Marks

(8)

Pages: 3

PART A

Answer all questions. Each question carries 3 marks

- 1 Without using truth tables, show that (3) $p \rightarrow (q \rightarrow r) \equiv p \rightarrow (\sim q \lor r) \equiv (p \land q) \rightarrow r$ 2 Define the terms: Converse, Inverse and Contrapositive. (3)3 What is Pigeonhole Principle? Given a group of 100 people, at minimum, (3)how many people were born in the same month? 4 In how many ways can the letters of the word 'MATHEMATICS' be (3)arranged such that vowels must always come together? 5 If $A = \{1, 2, 3, 4\}$, give an example of a relation on A which is reflexive and (3)transitive, but not symmetric. Define a complete lattice. Give an example. (3)6 7 Define a recurrence relation. Give an example. (3) Determine the coefficient of x^{15} in $f(x) = (x^2 + x^3 + x^4 + \dots)^4$ 8 (3)9 Define semi-group. Give an example. (3)10 Show that the set of idempotent elements of any commutative monoid forms (3)a submonoid. PART B Answer any one full question from each module. Each question carries 14 marks Module 1
- 11(a) Check whether the propositions $p \land (\sim q \lor r)$ and $p \lor (q \land \sim r)$ are logically (6) equivalent or not.
 - (b) Check the validity of the statement

 $p \to q$ $q \to (r \land s)$

 $p \wedge t$

- 8

∴ u

12(a) Show that $((p \to q) \land (q \to r)) \to (p \to r)$ is a tautology. (6)

(8)

(b) Let p, q, r be the statements given as

p: Arjun studies. q: He plays cricket. r: He passes Data Structures.

Let p_1, p_2, p_3 denote the premises

 p_1 : If Arjun studies, then he will pass Data Structures.

 p_2 : If he doesn't play cricket, then he will study.

 p_3 : He failed Data Structures.

Determine whether the argument $(p_1 \land p_2 \land p_3) \rightarrow q$ is valid.

Module 2

13(a) State Binomial theorem. Find the coefficient of xyz^2 in $(2x - y - z)^4$ (6)

- (b) Determine the number of positive integers n such that $1 \le n \le 100$ and n is not divisible by 2,3 or 5. (8)
- 14(a) Prove that if 7 distinct numbers are selected from {1,2,3, ..., 11}, then sum of (6) two among them is 12.
 - (b) An urn contains 15 balls, 8 of which are red and 7 are black. In how many (8) ways can 5 balls be chosen so that (i)all the five are red (ii)all the five are black (iii) 2 are red and 3 are black (iv)3 are red and 2 are black.

Module 3

- 15(a) If f, g and h are functions on integers, $f(n) = n^2$, g(n) = n + 1, (6) h(n) = n - 1, then find (i) $f^\circ g^\circ h$ (ii) $g^\circ f^\circ h$ (iii) $h^\circ f^\circ g$
 - (b) If A = {a, b, c} and P(A) be its power set. The relation ≤ be the subset (8) relation defined on the power set. Draw the Hasse diagram of (P(A), ≤).
- 16(a) Let R be a relation on Z by xRy if 4|(x y). Then find all equivalence (6) classes.
 - (b) Find the complement of each element in D_{42} . (8)

Module 4

- 17(a) Solve the recurrence relation $a_{n+1} = 2a_n + 1$, $n \ge 0$, $a_0 = 0$. (6)
 - (b) Solve the recurrence relation $a_{n+2} = a_{n+1} + a_n$, $n \ge 0$, $a_0 = 0$, $a_1 = 1$ (8)

0800MAT203122001

18(a)	Solve the recurrence relation $a_{n+2} - 4a_{n+1} + 3a_n = -200$, $n \ge 0$,	(6)
	$a_0 = 3000, a_1 = 3300$	
(b)	Solve the recurrence relation $a_n = 2a_{n-1} - 4a_{n-2}$, $n \ge 3$, $a_1 = 2$, $a_2 = 0$	(8)
Module 5		
19(a)	If $f: (R^+, \circ) \to (R, +)$ as $f(x) = lnx$, where R^+ is the set of positive real	(6)
	numbers. Show that f is a monoid isomorphism from R^+ onto R.	
(b)	Show that every subgroup of a cyclic group is cyclic.	(8)
20(a)	State and prove Lagrange's Theorem.	(6)
(b)	If $A = \{1,2,3\}$. List all permutations on A and prove that it is a group.	(8)