(Pages: 3)

Name Smson K. T.
Reg. No. 14ACECS ON3

THIRD SEMESTER B.TECH. (ENGINEERING) DEGREE EXAMINATION, DECEMBER 2003

CS2K 301 PTCS2K / IT2K

ENGINEERING MATHEMATICS III

Time: Three Hours

Maximum > 00 Marks

Answer all questions.

- 1. (a) Determine whether the set of vectors (2, 3, -1), (3, 2, 2), (4, 4, -1) in R³ are linearly dependent or linearly independent.
 - (b) Given the transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$, where T(x, y) = (ax + cy, cx + by), find $T^2(x, y)$.
 - (c) Determine the rank of the matrix $\begin{pmatrix} 2 & -1 & 3 \\ 1 & -2 & 3 \\ 5 & 0 & 3 \end{pmatrix}$.
 - (d) If $f(x) = \frac{x}{x+4}$, compute f(A) for the matrix $A = \begin{pmatrix} -1 & 2 & 2 \\ 2 & -1 & -2 \\ -2 & 2 & 3 \end{pmatrix}$.
 - (e) If w = f(z) is an analytic function, prove that $\frac{dw}{dz} = \frac{\partial w}{\partial x} = -i\frac{\partial w}{\partial y}$.
 - (f) Find the invariant points of the transformation $w = \frac{2z+6}{z+7}$.
 - (g) Find the zeros of the function $\frac{z^3-1}{z^2+1}$ and indicate their order.
 - (h) Using Cauchy's integral formula, evaluate $\int_{C} \frac{\cos \pi z}{z-1} dz$. C: the square with vertices $\pm 2 \pm 2i$.

 $(8 \times 5 = 40 \text{ marks})$

- 2. (a) Find the subspace U of R³ spanned by the vectors $v_1 = (1, -2, 1)$, $v_2 = (-2, 0, 3)$ and $v_3 = (3, -2, -2)$. Are the vectors (4, -4, -1) and (6, -6, -2) in U?
 - (b) Show that every set of n linearly independent vectors $\{v_1, v_2, \ldots, v_n\}$ of an n-dimensional vector space V is a basis of V.

- (c) Prove that the Schwarz inequality is equivalent to the triangle inequality $||u+v|| \le ||u|| + ||v||$.
- (d) The matrix $A = \begin{bmatrix} 1 & -2 & 1 \\ 0 & 1 & 2 \end{bmatrix}$ is a linear transformation from R^3 into R^3 . What is the image of $\begin{bmatrix} 5 \\ 2 \\ -1 \end{bmatrix}$ under A?
- 3. (a) Show that if A and B are $n \times n$ matrices of rank n, then both AB and BA are of rank n.
 - (b) Find the characteristic values and the corresponding characteristic vectors of the matrix equation $(A \lambda B)X = 0$ if $A = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}$, $B = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 3 \end{pmatrix}$.

Or

- (c) For the matrix $A = \begin{pmatrix} 1 & 0 & 3 \\ 1 & -1 & 1 \\ -1 & 3 & 3 \end{pmatrix}$, find a pair of matrices (P, Q) such that PAQ is a diagonal matrix.
- (d) If $A = \begin{bmatrix} 4 & 2 \\ -3 & -1 \end{bmatrix}$, use Cayley-Hamilton theorem to express A^n in terms of A and I.
- 4. (a) If u(x, y) and v(x, y) are harmonic functions in a region R, prove that the function $\left(\frac{\partial u}{\partial y} \frac{\partial v}{\partial x}\right) + i\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right)$ is an analytic function of Z = x + iy.
 - (b) Determine the linear transformation that will map the points 1-2i, 2+i, 2+3i respectively into 2+2i, 1+3i, 4. Find the invariant points of the transformation.

Or

- (c) Construct the analytic function whose imaginary part is e^{-x} ($x \cos y + \sin y$) and which equals 1 at the origin.
- (d) Find the transformation that maps a wedge of angle $\frac{\pi}{6}$ of the w-plane onto the upper half of the Z-plane.

- 5. (a) Evaluate $\int_{C} (z^2 + 2z) dz$, where C is the
 - (i) upper half of the circle |z-1|=1.
 - (ii) lower half of the circle |z-1|=1.
 - (iii) Circle |z 1| = 1.
 - (b) Finding a suitable Laurent's expansion for $\frac{1}{z^2(z-i)}$, find the residue of f(z) at its singular points.

Or

- (c) Using Cauchy's integral formula, evaluate $\int_{C} \frac{z^4}{(z+1)(z-i)^2} dz$, where C is the ellipse $9x^2 + 4y^2 = 36$.
- (d) By Contour integration show that $\int_{0}^{\infty} \frac{x^{6}}{(x^{4}+1)^{2}} dx = \frac{3\pi}{8\sqrt{2}}.$

 $(4 \times 15 = 60 \text{ marks})$