D 30331

(Pages : 2)

Nome	
Name	*********

Reg. No.....

THIRD SEMESTER B.TECH. (ENGINEERING) DEGREE **EXAMINATION, DECEMBER 2003**

EC 2K 303. SOLID STATE DEVICES

Time : Three Hours

Maximum: 100 Marks

- 1. (a) What are intrinsic and extrinsic semiconductors ? Explain their conductivity at absolute and room temperature.
 - (b) Define carrier life time. What are the various factors that decides this time?
 - (c) Draw the energy band diagram of a forward bias biased p-n junctions and explain.
 - (d) What is tunnelling effect ? Explain.
 - (e) Explain about Kirk effect in BJTs.
 - (f) What are the advantages of hetero junction Ga
 - (g) What is meant by strong inversion ? Explain.
 - (h) Explain about GaAs MESFETs.

 $(8 \times 5 = 40 \text{ marks})$

2. (a) (i) Derive the equation for equilibrium concentration of holes in a semiconductor.

			(7 marks)
	(ii)	Derive the equations for the Fermi level in intrinsic material.	(8 marks)
E		Or	
b)	(i)	Explain in detail about conductivity and mobility of semiconductors.	(7 marks)

- (7 marks) (ii)
 - Derive the current continuity equation for semiconductors.
- **3.** (a) (i) What are various mechanisms that happen when a p-n junction is formed ? Explain about contact potential.
 - (ii) Derive the equation for the p-n junction current components for forward bias and reverse bias case.

(7 marks)

(8 marks)

(8 marks)

Or

b) (1) Explain about various breakdown me	echanisms in a <i>p-n</i> junction. (7 marks)
---	---------------------------------------	----------

- (ii) Explain about Schottky barrier. What are its advantages over p-n junction. (8 marks)
- (a) (i) Explain the operation of BJT with various current components. Derive the equations for the terminal current.
 - (8 marks) (ii) Explain d.c. and a.c. load line of BJTs. Explain how load lines can be drawn. (7 marks)
 - Or

Turn over

$\frac{2}{100}$	D 303 31
(b) (i) Derive the Ebers-Moll equation and model for a BJT.	(8 marks)
(ii) Explain the operation of UJT with its equivalent circuit. What are its a	pplications ?
	(7 mark <mark>s)</mark>
5. (a) Explain in detail the operation of depletion mode and enhancement mode I	MOSFETs. Dra <mark>w</mark>
its V-I characteristics.	
Salas Martin Sergena and	(15 marks)
dure sur Made at the sure of the duly of the second states of the second states at the	an and the Lat
(b) (i) Explain in detail about MOS capacitance.	(7 marks)
(ii) Explain the short channel and substrate bias effects of MOSFET.	(8 marks)

(ii) Explain the short channel and substrate bias effects of MOSFET. 10 - 10

won werth

 $[4 \times 15 = 60 \text{ marks}]$

NIDIA

Strate Battler 5 1 Bank inden i hat

an elisa

consists in through bass and so man

monolense of enkering all total and a finance