(Pages: 2)

COMBINED FIRST AND SECOND SEMESTER B.TECH. DEGREE EXAMINATION, JUNE 2003

(New Scheme)

CS2K 109/IT2K 109. BASIC ELECTRICAL ENGINEERING

Time: Three Hours

Maximum: 100 Marks

Answer all questions.

Part A

- (a) A series RL circuit with R = 25 ohms, L = 0.02 H is connected to a 250 V, 50 cycles source. Calculate (i) the impedance; (ii) current; (iii) power; and (iv) power factor.
 - (b) State and explain Kirchhoff's laws.
 - (c) From the following circuit, determine the poles and zeros of impedance. If energy is stored in the circuit in the form of an initial voltage V_0 on the capacitor, predict the current i that will flow when the switch S is closed.

- (d) Derive the characteristics equation of a mechanical mass damper second order system.
- (e) Write a short note on hysteresis.
- (f) Explain the efficiency and regulation of a transformer.
- (g) Draw and explain the circuit model of an alternator.
- (h) Explain the SCR based thyristor speed control of a DC motor.

 $(8 \times 5 = 40 \text{ marks})$

Part B

2. (a) Find the current in the 150 ohms load resistor and the power consumed in it by the principle of superposition.

(b) A series circuit has R = 10 Ω, L = 50 mH and C = 100 µf and is supplied with 200 V 50 c/s. Find (i) the impedance; (ii) the current; (iii) the power; (iv) the power factor; and (v) the voltage drops across each element.
(15 modes)

(15 marks)

- 3. (a) In the circuit, $R_1 = 2\Omega$, $R = 4\Omega$ and L = 2H.
 - (i) Determine enough points to plot z (s).
 - (ii) What is the impedance of this circuit to direct current?
 - (iii) If a voltage $v = V_0 e^{st}$ is acting where $V_0 = 1$ V, what current i flows for s = -4? For s = -3? For s = -2?
 - (iv) Assume current $i = 2e^{-4t}$ A is flowing and calculate the necessary voltage v(t).

(15 marks

- (b) Explain the following terms:
 - (i) Series resonance.

(8 marks)

(ii) Parallel resonance.

(7 marks)

4. (a) Explain the D'Arsonval mechanism with neat diagram.

O

- (b) A core in the figure is made of silicon sheet steel with an air-gap 2 mm. long; a = 4 cm., c = 5 cm. and b = d = 20 cm. The 300 turn coil has a resistance of 2Ω . Estimate the current for
 - (i) A steady-state magnetic flux of 2.5 mWb across the air gap.
 - (ii) An applied voltage of 120 V d.c.
 - (iii) An applied voltage of 120 V at 60 Hz.
 - (iv) An applied voltage of 120 V at 40 Hz.

(15 marks)

- 5. (a) Explain the working principle of:
 - (i) Self excited generators.

(7 marks)

(ii) Field excited generators.

(8 marks)

Or

(b) Draw the construction and neatly explain the working principle of a synchronous motor.

(15 marks)

 $[4 \times 15 = 60 \text{ marks}]$