C 26938

Name	••••••

Reg. No....

COMBINED FIRST AND SECOND SEMESTER B.TECH. (ENGINEERING) DEGREE EXAMINATION, JUNE 2003

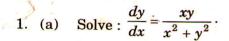
EN.2K 102-MATHEMATICS-II

(New Scheme)

Time: Three Hours

Maximum: 100 Marks

Answer all the questions.



- (b) Solve: $(D-3D+2)y = \sin 3x$.
- (c) Find $L\left(\frac{e^{-at}-e^{-bt}}{t}\right)$.
- (d) Find L⁻¹ $\left[\frac{1}{(s+1)(s^2+2s+2)} \right]$

- (e) Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 3$ at the point (2, -1, 2)
- (f) If $\vec{F} = (x^2 y^2 + 2xz)i + (xz xy + yz)j + (z^2 + x^2)k$, find Curl \vec{F} and Curl Curl \vec{F} .
- (g) Evaluate $\iint x y \, dx \, dy$ over the positive quadrant of the circle $x^2 + y^2 = a^2$.
- (h) By using Green's theorem, evaluate $\int_{c}^{c} (x^2 y dx + y^3 dy)$ where C is the closed path formed by y = x and $y^3 = x^2$ from (0, 0) to (1, 1).

 $(8 \times 5 = 40 \text{ marks})$

2. (a) (i) Show that the system of confocal parabolas $y^2 = 4a(x+a)$ is self-orthogonal.

(7 marks)

(ii) Solve: $(x^2 D^2 + 4xD + 2) y = e^x$.

(8 marks)

Or

(b) (i) Solve:
$$2x \frac{dy}{dx} + y = 2x^3$$
.

(6 marks)

(ii) By the method of variation of parameters, solve $\frac{d^2y}{dx^2} + 4y = \tan 2x$.

(9 marks)

(i) Evaluate $\int_0^\infty e^{-x^4} dx$, by using Gamma function.

(5 marks)

(ii) $\frac{d^2y}{dt^2} - 3\frac{dy}{dt} + 2y = 4e^{2t}$ with y(0) = -3; $\frac{dy}{dt}(0) = 5$ by using Laplace transform techniques.

(10 marks)

(b) (i) Find (1)
$$L^{-1} \left[\frac{1}{s(s-a)} \right]$$
; and (2) $L^{-1} \left[\log \frac{1-s^2}{s^2} \right]$.

(5 marks)

(ii) Solve the system of equations $\frac{dy}{dt} + ay = x$; $\frac{dx}{dt} + ax = y$ with x(0) = 0; y(0) = 1.

(10 marks)

(i) Find the directional derivative of $\phi = x^2y z + 4xz^2$ at (1, -2, -1) in the direction of 2i-j-2k.

(7 marks)

(ii) Prove that $\nabla \cdot \left(\overrightarrow{u} \times \overrightarrow{v} \right) = \overrightarrow{v} \cdot \left(\nabla \times \overrightarrow{u} \right) - \overrightarrow{u} \cdot \left(\nabla \times \overrightarrow{v} \right)$.

(8 marks)

(i) Show that $\vec{F} = (6xy + z^3)$ if $(3x^2 - z)j + (3xz^2 - y)k$ is irrotational and hence find its scalar potential.

(8 marks)

(ii) Prove that Curl $|f(r)\overrightarrow{r}| = 0$ if \overrightarrow{r} is the position vector and r is its magnitude.

(7 marks

(i) By changing the order of integration, evaluate $\int_0^1 \int_0^1 xy \, dx \, dy$

(6 marks)

(ii) Evaluate $\iint_{S} \vec{F} \cdot \hat{n} \, ds \text{ if } \vec{F} = (x^2 - yz)i + (y^2 - zx)j + (z^2 - xy)k \text{ and S is the surface of } 0 \le x \le a, \ 0 \le y \le b, \ 0 \le y \le c.$

(9 marks)

0

- (b) (i) Evaluate $\int_{c} \vec{F} \cdot d\vec{r}$ if $\vec{F} = (5xy 6x^2)i + (2y 4x)j$ and C is the curve in the xy-plane, $y = x^3$ from (1, 1) to (2, 8).
 - (ii) Verify Stoke's theorem for $\vec{F} = (x^2 + y^2 4)i + 3xyj + (2xz + z^2)k$ where S is the surface of the hemisphere $x^2 + y^2 + z^2 = 16$, above the xy-plane and C is its boundary.

 (8 marks)

