FOURTH SEMESTER B.TECH. (ENGINEERING) EXAMINATION, JUNE 2004
CS. 2K. 403/PTCS. 2K. 403-THEORY OF COMPUTATIO
(New Scheme)
Maximum : 100 Marks

- Time : Three Hours

Answer all questions.
Assume suitable data that are not given.
I. (a) Prove by induction on n that

$$
\sum_{i=0}^{n} i=\frac{n(n+1)}{2} .
$$

(b) State pumping lemma for regular languages.
(c) Explain Chomsky hierarchy of languages.
(d) Prove that context-free languages are closed under union, concatenation and Kleene's closures.
(e) Explain the post correspondence problem.
(f) Give the relations among complexity measures.
(g) Explain the terms validity and satisfiability.
(h) Write the symbols of predicate calculus.
$(8 \times 5=40$ marks $)$
II. (a) (i) Construct regular expressions corresponding to the state diagram given below

(ii) State the Myhill-Nerode theorem and write the algorithm for marking pairs inequivalent states.

Or
(b) (i) Construct minimal dfa for the regular expression.

$$
(a b / b a)^{*}(a / b)
$$

(ii) Construct a finite automation that accepts the language generated by the gram

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{a} \mathrm{~A} \\
& \mathrm{~A} \rightarrow \mathrm{ab} \mathrm{~B} / \mathrm{b} \\
& \mathrm{~B} \rightarrow \mathrm{aA} / \mathrm{a} .
\end{aligned}
$$

III. (a) (i) Construct PDA for the Language $\mathrm{L}=\left\{x \in\{a, b\}^{*} \mid n_{a}(x)>n_{b}(x)\right\}$
(ii) Use pumping lemma to show that the language given below is not a $\mathrm{L}=\left\{a^{n} b^{2 n} a^{n} \mid n \geq 0\right\}$

Or

(b) (i) Design Turning machine to implement the language $\left\{a^{n} b^{n} c^{n} \mid n \geq 1\right\}$
(ii) Convert the grammar.

$$
\begin{align*}
& \mathrm{S} \rightarrow \mathrm{SAb} \mid \mathrm{a} \\
& \mathrm{~A} \rightarrow \mathrm{aaA} \mid \mathrm{Sa} \text { in to GNF form. }
\end{align*}
$$

IV. (a) (i) Show that there is no algorithm for deciding if any two Turning machines M_{1} accept the same language.
(ii) Explain the unsolvable Tiling problem.

Or
(b) Explain the integer programming and show how it is a NP—complete problem.
V. (a) (i) Construct truth-table for the formula given below :

$$
\neg(\neg \mathrm{A} \vee \neg(\neg \mathrm{~B} \vee \neg \mathrm{~A}))
$$

(ii) Connert to conjunctive normal form

$$
(\mathrm{A} \vee(\neg \mathrm{~B} \wedge(\mathrm{C} \vee(\neg \mathrm{D} \wedge \mathrm{E}))))
$$

Or
(b) (i) Convert to clause form

$$
\urcorner\left(\forall x \exists y \mathrm{P}_{\mathrm{xy}} \rightarrow(\forall y \exists z\urcorner \mathrm{Q}_{\mathrm{xz}} \wedge \forall y\right\urcorner \forall z \mathrm{R}_{\mathrm{yz}}\right)\right)
$$

(ii) Find all resolvent of

$$
\left.\left\{\mathrm{P}_{x} f(x) z_{1} \mathrm{P}_{\text {uuw }}\right\},\left\{{ }_{7} \mathrm{P}_{x y z},\right\urcorner \mathrm{P}_{z z z}\right\}
$$

$$
[4 \times 15=6 c
$$

