

Time : Three Hours
Maximum : 100 Marks

Answer all questions.

1. (a) Find the Fourier transform of $f(x)$ given by $f(x)=\left\{\begin{array}{lll}1 & \text { for } & |x|<a \\ 0 & \text { for } & |x|>a>0 .\end{array}\right.$.
(b) Obtain the Fourier cosine transform of $e^{-x^{2}}$.
(c) For what value k, the following function represents a probability mass function $f(x)=k 3^{-x} ; x=1,2,3, \ldots$ Find its mean value.
(d) An unbiased coin is tossed for 8 times. What is the probability of getting:
(i) at least 3 heads.
(ii) exactly 5 heads.
(e) If the joint density function of the random variables X and Y is:

$$
f(x, y)=\left\{\begin{array}{cl}
15 x y e^{-5 x-3 y} & ; x>0, y>0 \\
0 & ; \text { otherwise }
\end{array}\right.
$$

then prove that X and Y are independent random variables.
(f) The joint density of X and Y is given by

$$
f(x, y)=\left\{\begin{array}{cl}
6 x y(2-x-y) & 0<x<1, \quad 0<y<1 \\
0 & \text { otherwise }
\end{array}\right.
$$

Obtain the conditional densities $f_{x \mid y}(x \mid y)$ and $f_{y \mid x}(y \mid x)$.
(g) The one-step transition probability matrix of a 2-state Markov chain is given by $\mathrm{P}=\left[\begin{array}{ll}0.5 & 0.5 \\ 0.3 & 0.7\end{array}\right]$ find $P^{(3)}$ and $P^{(4)}$.
(h) Prove that the inter arrival times of Poisson process follow exponential distribution.

$$
(8 \times 5=4 \text { (marks })
$$

2. (a) (i) Find the Fourier transform of $f(x)=\left\{\begin{array}{cc}1-|x| & \text { for }|x|<1 \\ 0 & \text { otherwise }\end{array}\right.$.
(ii) Obtain the Fourier cosine transform of $f(x)=\left\{\begin{array}{cc}\cos x & \text { for } 0<x<\pi \\ 0 & \text { otherwise }\end{array}\right.$.
(b) (i) Find $f(x)$, if its Fourier sine transform $\mathrm{F}_{\mathrm{s}}[f(x)]=\frac{w}{w^{2}+1}$.
(ii) Solve for $f(x)$ from the integral equation $\int_{0}^{\infty} f(x) \cos a x d x=e^{-a}$.
3. (a) (i) Find the distribution function of the random variable X whose probability density is given by :

$$
f(x)=\left\{\begin{array}{cc}
\frac{x^{2}}{18} & 0<x<3 \\
\frac{(6-x)^{2}}{18} & 3<x<6 \\
0 & \text { elsewhere }
\end{array}\right.
$$

Also find its mean.
(ii) Determine the moment generating function of the random variable X whose density function $f(x)=\frac{1}{10} e^{-5|x|}-\infty<x<\infty$ and hence its mean $E(X)$.
(7 marks)
Or
(b) (i) The number of monthly breakdowns of a computer is a random variable having a Poisson distribution with $\lambda=2.5$. Find the probability that this computer will function for a month :
(1) without a breakdown.
(2) not more that 3 breakdowns.
(3) exactly one breakdown.
(ii) A balanced coin is tossed for 100 times using normal approximation (8 marks) probability of getting :
(1) not more than 45 heads.
(2) more than 40 but less than 70 heads.
4. (a) (i) If X and Y are independent random variables both uniformly distributed in (0,1), find the
probability density of $\mathrm{X}+\mathrm{Y}$.
(ii) The number of driving licenses issued in a certain city during a month is a random variable with mean 124 and standard deviation 7.5 . Using Chebyshev's inequality with what probability we can assert that between 64 and 184 licences will be issued during a forth coming month ?
(7 marks)

Or

(b) (i) The joint density function of the random variable X and Y is given by $f(x, y)=\left\{\begin{array}{cc}x+y & 0 \leq x \leq 1 \\ 0 & 0 \leq y \leq 1 \\ 0 & \text { otherwise }\end{array}\right.$. Find the covariance between X and Y.
(ii) The point probability mass function of X and Y is given by $\mathrm{P}[\mathrm{X}=i, \mathrm{Y}=j]=e^{-(a+b i)} \frac{(b i)^{j}}{j!} \frac{a^{i}}{i!} i \geq 0, j \geq 0$. Find the conditional distribution of Y given that $\mathrm{X}=i$.
5. (a) (i) A three state Markov chain with transition probability matrix is g

$$
\mathrm{P}=\left[\begin{array}{lll}
0.4 & 0.1 & 0.5 \\
0.4 & 0.3 & 0.3 \\
0.3 & 0.5 & 0.2
\end{array}\right] .
$$

Find the limiting probabilities.

(ii) The repair time required for a certain type of machine is exponential distributed with a mean of 5 hours. What is the probability that a repair time exceeds 7 hours? What is the probability that the repair is over within 8 hours given that already the repair takes 3 hours ?
(7 marks)
Or
(b) (i) Show that S_{n}, the arrival time of nth event in Poisson process follows the density function

$$
f_{s_{n}}(t)=\lambda e^{-\lambda t} \frac{(\lambda t)^{n-1}}{(n-1)!}
$$

(ii) Motor cars pass a point on a highway at a Poisson rate of 5 per minute in which 5 per cent of the motor cars are vans. What is the probability that atleast one van passes by during an hour? If 25 motor cars have passed in one hour, what is the probability that 5 of them are vans?
(b) (i) Find $f(x)$, if its Fourier sine transform $\mathrm{F}_{\mathrm{s}}[f(x)]=\frac{w}{w^{2}+1}$.
(ii) Solve for $f(x)$ from the integral equation $\int_{0}^{\infty} f(x) \cos a x d x=e^{-a}$.
3. (a) (i) Find the distribution function of the random variable X whose probability density is given by :

$$
f(x)=\left\{\begin{array}{cl}
\frac{x^{2}}{18} & 0<x<3 \\
\frac{(6-x)^{2}}{18} & 3<x<6 \\
0 & \text { elsewhere }
\end{array}\right.
$$

Also find its mean.
(ii) Determine the moment generating function of the random variable X whose density function $f(x)=\frac{1}{10} e^{-5|x|}-\infty<x<\infty$ and hence its mean $\mathrm{E}(\mathrm{X})$.

Or
(b) (i) The number of monthly breakdowns of a computer is a random variable having a Poisson distribution with $\lambda=2.5$. Find the probability that this computer will function for a month :
(1) without a breakdown.
(2) not more that 3 breakdowns.
(3) exactly one breakdown.
(ii) A balanced coin is tossed for 100 times using normal approximation determine the probability of getting :
(1) not more than 45 heads.
(2) more than 40 but less than 70 heads.
4. (a) (i) If X and Y are independent random variables both uniformly distributed in (0,1), find the probability density of $\mathrm{X}+\mathrm{Y}$.

