THIRD SEMESTER B．Tech．（ENGINEERING）

 DECEMBER 2004
（New Scheme）

RTCS 2K 303／IT／CS2K 303—DISCRETE COMPUTATIONAEs毛托もTURES

1．（a）Obtain the disjunctive normal form of $(P \rightarrow Q) \vee(R \nleftarrow P) \wedge(Q \vee R)$ ．
（b）Show that R is a valid inference from the premises $P \rightarrow Q, Q \rightarrow R$ and P ．
（c）In a Boolean algebra，show that（i）$a * a=a$ ；（ii）$a \oplus 1=1$ ．
（d）Give a relation which is both a partial ordering relation and an equivalence relation on a set． Also draw the Hasse diagram for the relation．
（e）Show that the set of all polynomials in x under the operation of addition is a group．
（f）Prove that a subset $\mathrm{S} \neq \phi$ of G is a subgroup of（ $\mathrm{G}, *$ ）iff for any pair of elements $a, b \in \mathrm{~S}$ ， $a * b^{-1} \in \mathrm{~S}$ ．
（g）Prove that any field is an integral domain．
（h）If R is a ring and $a \in \mathrm{R}$ ，let $r(a)=\{x \in \mathrm{R} / a x=0\}$ ．Prove that $r(a)$ is a right ideal of R ．

$$
(8 \times 5=40 \text { marks })
$$

2．（a）（i）Show that $(x)(\mathrm{P}(x) \vee \mathrm{Q}(x)) \Rightarrow(x) \mathrm{P}(x) \vee(\exists x) \mathrm{Q}(x)$ ．
（8 marks）
（ii）Show that $(\neg P \wedge(\neg Q \wedge R)) \vee(Q \wedge R) \vee(P \wedge R) \Leftrightarrow R$ without using truth table．
（7 marks）
Or
（b）（i）Show that $((\mathrm{P} \vee \mathrm{Q}) \wedge \neg(\neg \mathrm{P} \wedge(\neg \mathrm{Q} \vee \neg \mathrm{R}))) \vee(\neg \mathrm{P} \wedge \neg \mathrm{Q}) \vee(\neg \mathrm{P} \wedge \neg \mathrm{R})$ is a tautology：
（ii）Show that $P \vee Q, \quad Q \vee R, R \rightarrow S \Rightarrow P \rightarrow S$ ．
3．（a）（i）Show that the set Q of rational numbers is denumerable．
（ii）Let $f: \mathrm{R} \rightarrow \mathrm{R}$ and $g: \mathrm{R} \rightarrow \mathrm{R}$ where R is the set of real numbers．Find fog and gof，where $f(x)=x^{2}-2$ and $g(x)=x+4$ ．State whether these functions are injective，surjective and bijective．
（7 marks）
(b) (i) Prove that relation R given by $\mathrm{R}=\{(x, y) / x-y$ is divisible by $m\}$ over the set of positive integers is an equivalence relation. Show also that if $x_{1} \mathrm{R} y_{1}$ and $x_{2} \mathrm{R} y_{2}$, then $\left(x+x_{2}\right) R\left(y_{1}+y_{2}\right)$.
(ii) Prove that $(A \cap B) \times(C \cap D)=(A \times C) \cap(B \times D)$.
4. (a) (i) Prove that a code can detect all combinations of K or fewer errors if and only if the minimum distance between any two code words is at least $\mathrm{K}+1$.
(ii) Prove that every group of order 4 is abelian.
(b) (i) Prove that an infinite cyclic group is isomorphic to the group $(z,+)$.
(ii) Prove that every subgroup of an abelian group is normal. Is the converse true ? Justif your answer?
5. (a) (i) If L is an algebraic extension of K and if K is an algebraic extension of F, then prove that L is an algebraic extension of F.
(ii) Prove that it is impossible to trisect 60° by straitedge and compass alone. (7 marks) Or
(b) (i) Given two polynomials $f(x)$ and $g(x)$ over a field F , show that there exists two $r(x)<\operatorname{deg} g(x)$ and $r(x)$ in $\mathrm{F}[x]$ such that $f(x)=t(x) g(x)+r(x)$ where $r(x)=0$ or deg. $r(x)<\operatorname{deg} . g(x)$.
(ii) Prove that $x^{3}-9$ is reducible over the integers $\bmod 11$.

