Reg. No.....

COMBINED FIRST AND SECOND SEMESTER B. Tech (ENGINEERING) DEGREE EXAMINATION, JUNE 2005

EN2K 102—MATHEMATICS—II

(Common to all Branches)

Time: Three Hours

Part A

Each question carries 5 marks.

(b) Solve
$$\frac{dy}{dx} = \frac{x^2 + xy + y^2}{x^2}$$
.

(c) Find L $(t^2 e^t \sin t)$.

(d) Find
$$L^{-1}\left(\frac{s+1}{(s^2+2s+2)^2}\right)$$
.

(e) If \vec{r} is the position vector of any point P(x, y, z), prove that grad $r^n = n r^{n-2} \vec{r}$

(f) Show that
$$\operatorname{div}\left(\frac{\vec{r}}{r}\right) = \frac{2}{r}$$
.

(g) Use Green's theorem to evaluate $\int_C x^2 y \, dx + y^3 dy$, where C is the closed path formed by y = x and $y = x^3$ from (0, 0) to (1, 1).

(h) Evaluate $\int_{C} \vec{f} \cdot d\vec{r}$, where $\vec{f} = (x^2 + y^2)\vec{i} + (x^2 - y^2)\vec{j}$ and C is the curve $y = x^2$ joining (0, 0) to (1, 1).

 $(8 \times 5 = 40 \text{ marks})$

Part B

II. (a) Solve
$$\frac{dy}{dx} = \frac{2x + 3y + 5}{3x + 2y + 7}$$
. (7 marks)

(b) Solve
$$x^2y'' - xy' + 4y = \cos(\log(x)) + x\sin(\log(x))$$
. (8 marks)

(c) A plate is heated to 80 °C at time t = 0 and it is place in water, which is maintained at 30 °C. If at time t = 3 minutes, the temperature of the plate is 50 °C, find the time at which the temperature of the ball is 40 °C.

(8 marks)

(d) Solve $(D^2 - 6D + 9)y = 6e^{3x} + 7e^{-2x} - \log z + 3^x$.

(7 marks)

III. (a) Solve $\frac{d^2y}{dt^2} + 2\frac{dy}{dt} - 3y = \sin(t)$ given y(0) = 0, y'(0) = 0, when t = 0 using Laplace transform.

(15 marks)

Or

- (b) Using Laplace transform solve $(D^2 + D)y = t^2 + 2t$, where y(0) = 4 and y'(0) = -2. (15 marks)
- IV. (a) Find the angle between the surfaces $z = x^2 + y^2 3$ and $x^2 + y^2 + z^2 = 9$ at (2, -1, 2). (8 marks)
 - (b) Prove that $\operatorname{curl}(\vec{u} \times \vec{v}) = (\vec{v} \cdot \nabla) \vec{u} (\vec{u} \cdot \nabla) \vec{v} + \vec{u} \operatorname{div} \vec{v} \vec{v} \operatorname{div} \vec{u}$. (7 marks)

Or

(c) If \vec{r} is the position vector of the point P (x, y, z), then prove (i) div $\vec{r} = 3$; (ii) curl $\vec{r} = \vec{0}$; (iii) $\nabla r^n = n r^{n-2} \vec{r}$ where $r = |\vec{r}|$.

(15 marks)

V. (a) Verify Gauss divergence theorem for $\vec{F} = x^2 \vec{i} + y^2 \vec{j} + z^2 \vec{k}$ taken over the cube bounded by the planes x = 0, x = 1; y = 0, y = 1; z = 0 and z = 1.

(15 marks)

Or

(b) Verify Stoke's theorem for $\vec{f} = (x^2 - y^2)\vec{i} + 2xy\vec{j}$ in the rectangular region x = 0, y = 0; x = a, y = b.

(15 marks)

 $[4 \times 15 = 60 \text{ marks}]$