0	-	-	-	-
2	1	1	9	
		_	v	_

(Pages : 2)

1/4/	Mr.	13/	p
Name	, 		•
_ 101 SH	-wk T	つけし	

FIFTH SEMESTER B.TECH. (ENGINEERING) DEGREE EXAMINATION DECEMBER 2006

EE 2K 503/PT EE 2K 304—ELECTROMAGNETIC FIELD THEORY

			E.	E 2K 503/P1 EE 2K 504—ELECTROMAGNETIC FIELD THEO	61
Tin	ne :	Thre	ee H	ours Maxim	um : 100 Marks
	I.	(a)	Ob	tain an expression for the capacitance of an isolated sphere.	
-		(b)	Ob	tain the solution of Laplace's equation in electrostatistics.	
	•	(c)	Dif	ferentiate electric dipole from magnetic dipole.	*
		(d)	En	umerate the characteristics of an ideal transmission line.	
		(e)	Ob	tain Maxwell's equations in time varying form. Also write the constitutive	relations.
		(f)			
22 E	(g) Obtain the relation between standing wave Ratio and reflection co-efficient.				
		(h)	Sta	ate and derive Snell's law of refraction.	
		•			\times 5 = 40 marks)
	II.	(a)	(i)	Explain cylindrical to spherical co-ordinate transformation. Obtain the	transformation
				equations.	(8 marks)
			···	The late of the second of Images	(7 marks)
			(ii)	Explain the principle of method of Images.	(Finance)
				Or	(0
		(b)	(i)	Derive expressions for energy stored in electric and magnetic fields.	(8 marks)
			(ii)	State and derive Stokes theorem and Divergence theorem.	(7 marks)
	III.	(a)	(i)	Derive expressions for Inductance solenoid and toroid.	(8 marks)
			(ii)	State and explain Biot-Savort's law and Ampere's law.	(7 marks)
				Or	
		(b)	(i)	State and derive Faraday's law of electromagnetic induction.	(8 marks)
			(ii)	Explain the characteristics of an ideal transmission line.	(7 marks)
	IV.	(a)	(i)	Explain the significance of poynting theorem. Derive an expression for p	poynting vector.
					(8 marks)
	**		(ii)	Differentiate Elliptical polarization from circular polarization.	(7 marks)
				Or	· · · · ·
		(b)	(i)	Derive standard wave equations.	(8 marks)
r			(ii)	Obtain Maxwell's equations in Integral term.	(7 marks)

(b) (1) Decimal operation for a registering and a central and squarette fields (Squares) (Square

(igner of the case of the case