D 27122

(Pages : 2)

Reg. No.

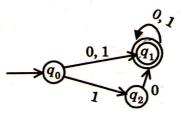
Name.

FIFTH SEMESTER B.TECH. (ENGINEERING) DEGREE EXAMINATION, DECEMBER 2006

CS 04 506—THEORY OF COMPUTATION

(2004 admissions)

Time : Three Hours


Maximum : 100 Marks

Answer all questions.

- 1. (a) Define NDFA. Give an example.
 - (b) Check whether the language $L = \{a^n b^n / n \ge 1\}$ is regular or not. Justify your answer.
 - (c) Give a CFG to generate the language $L = \{w \in \{a, b\}^* \text{ and contains equal number of } a's and b's\}.$
 - (d) Convert the grammar $S \rightarrow AB/aB$, $A \rightarrow aab$ and $B \rightarrow bbA$ into Chomsky normal form.
 - (e) Explain multihead turning machines.
 - (f) Explain post's correspondence problem with an example.
 - (g) Define NP and P problems. Give examples.
 - (h) What is the importance of study of NP complete problems?

(8 × 5 = 40 marks) (10 marks)

- 2. (a) (i) Give the algorithm for minimizing the states of DFA.
 - (ii) Construct a regular expression for the state diagram :

(5 marks)

(9 marks)

Or

(b) (i) Construct a NDFA equivalent to the regular expression $01^* + 1$.

(ii) Construct a DFA that accepts the language generated by the grammar :

 $S \rightarrow aA/a, A \rightarrow abB \text{ and } B \rightarrow bS.$

(6 marks)

Turn over

(15 marks)

(15 marks)

3. (a) Construct a PDA to accept the language $L = \{a^n b^{2n} / n \ge 0\}$.

(b) Construct a pushdown automata to recognize the language generated by the grammar : $S \rightarrow aABB/aAA, A \rightarrow aBB/a, B \rightarrow bBB/A.$

FUTTH SEMESTER B.TECTO ENGINEERING

2

4. (a) Discuss briefly the different types of Turing machines.

Or

(b) Design a Turing machine that accepts the language $L = \{a^n b^n a^n b^n / n \ge 0\}$.

(15 marks)

5. (a) State node cover decision problem. Show that it is NP-complete.

Or

in) What is the importance of study of NP complete problems ?

(i) Construct a MDFA equivalent to the regular expression 01*

(b) Explain the halting problem. Show that it is NP hard problem but not NP-complete.

(15 marks)

 $[4 \times 15 = 60 \text{ marks}]$