D 26574

(Pages : 2)

Name.....

Reg. No.

COMBINED FIRST AND SECOND SEMESTER B.TECH. (ENGINEERING) DEGREE EXAMINATION, DECEMBER 2006

EN 04-101-ENGINEERING MATHEMATICS

(2004 admissions)

Time : Three Hours

Answer all questions.

Part A

- I. (a) Find the radius of curvature at the point (x, y) of the curve $x^{2/3} + y^{2/3} = a^{2/3}$
 - (b) Verify Euler's theorem on homogeneous functions for the function $u = (x^2 + y^2 + z^2)^{-\frac{1}{3}}$.
 - (c) Discuss the convergence of the series $\sum_{n=1}^{\infty} \left(\frac{1}{\sqrt{n}} \frac{1}{\sqrt{n+1}} \right)$.
 - (d) Expand $\log (1 + x)$ using Maclaurin's series.
 - (e) Find the rank of the matrix by reducing it to the normal form $\begin{vmatrix} 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 6 \\ 4 & 5 & 6 & 7 \\ 9 & 10 & 11 & 19 \end{vmatrix}$
 - (f) Find the values of a and b for which the equations x + y + z = 3, x + 2y + 2z = 6, x + ay + 3z = b have (i) no solution; (ii) a unique solution.

(g) Obtain the Fourier series expansion for $f(x) = \begin{cases} 1, & 0 < x < \frac{l}{2} \\ 0, & \frac{l}{2} < x < l \end{cases}$ (h) Expand $f(x) = e^{-x}$ as a Fourier series in (-l, l).

 $(8 \times 5 = 40 \text{ marks})$

00 Marks

Part B

II. (a) (i) Find the evolute of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. (8 marks)

(ii) Find the centre of curvature of the cycloid $x = a (\theta - \sin \theta), y = a (1 - \cos \theta).$ (7 marks) Or

(b) (i) The area of a triangle is calculated from the angles A and C and the side b. If δA is the error in measuring A, show that the relative error in the area is approximately sin C δA

$$\overline{\sin A \cdot \sin (A + C)}$$
 (8 marks)

(ii) Investigate the maximum and minimum values of the expression : $x^3 + 3xy^2 - 15x^2 - 15y^2 + 72x.$

(7 marks)

Turn over

			2	· ·			D 26574
III. (a)	(i)	Discuss the converg	ence of the serie	es $\sum_{n=1}^{\infty} \left(\frac{2^n}{2^n} \right)$	$\frac{-2}{+1}\bigg)x^{n-1}(x)$	> 0).	(8 marks
	(ii)	Determine the inter	val of converge	nce for the s	eries $x - \frac{x^2}{2}$	$+\frac{x^3}{3}$ -	$\frac{x^4}{4}$ +
				н. — ⁶ — — — — — — — — — — — — — — — — — — —	-		(7 marks)
			Or		1. T		
(b)	(i)	Test the convergence					(8 m <mark>arks</mark>)
`	(ii)	Discuss the converge	ence of the serie	$\sum_{n=1}^{\infty} \frac{\left(n + \frac{1}{n^n}\right)}{n^n}$	$\frac{1)^n x^n}{+1}.$	(<u>-</u>	(7 m <mark>arks</mark>)
			*		3 10	5]	
IV. (a)	(i)	Using Cayley-Hamil	ton theorem fin	ad A^{-1} for A	= -2 -3 -	-4.	(8 marks)
1						<u>, 1</u>	
(b)	(ii) Redu	Find the nature of the cells $x^2 + 7y^2 + 3z^2 - 1$	Or $2xy - 8yz + 4xz$	into a canor			
(b)	Redu		Or $2xy - 8yz + 4xz$	into a canor			nal reduction.
	Redu	$ce 8 x^2 + 7 y^2 + 3 z^2 - 1$	Or 2 xy - 8 yz + 4xz quadratic form	; into a canor 1.	nical form by a	an orthogo	4
	Redu Also	$x = 8x^2 + 7y^2 + 3z^2 - 1$ ind the nature of the Expand $f(x) = x - x^2$,	Or $2 xy - 8 yz + 4xz$ quadratic form $-\pi \le x \le \pi \text{ in Fc}$	z into a canor ourier series.	nical form by a	an orthogo	nal reduction.
	Redu Also	$x^2 + 7 y^2 + 3 z^2 - 1$ ind the nature of the	Or $2 xy - 8 yz + 4xz$ quadratic form $-\pi \le x \le \pi \text{ in Fc}$	z into a canor ourier series.	nical form by a	an orthogo	nal reduction.
	Redu Also	$x = 8x^2 + 7y^2 + 3z^2 - 1$ ind the nature of the Expand $f(x) = x - x^2$,	Or $2 xy - 8 yz + 4xz$ quadratic form $-\pi \le x \le \pi \text{ in Fc}$	z into a canor ourier series.	nical form by a	an orthogo	nal reduction. (15 marks)
	Redu Also (i)	$\frac{2}{2} = 8x^{2} + 7y^{2} + 3z^{2} - 1$ ind the nature of the Expand $f(x) = x - x^{2}$, $\frac{1}{1^{2}} - \frac{1}{2^{2}} + \frac{1}{3^{2}}$	Or $2xy - 8yz + 4xz$ quadratic form $-\pi \le x \le \pi \text{ in Fo}$ $-\frac{1}{4^2} + \dots$	to into a canor a. burier series. $= \frac{\pi^2}{12}$	nical form by a	an orthogo	nal reduction. (15 marks) (8 marks)
	Redu Also	$x = 8x^2 + 7y^2 + 3z^2 - 1$ ind the nature of the Expand $f(x) = x - x^2$,	Or $2xy - 8yz + 4xz$ quadratic form $-\pi \le x \le \pi \text{ in Fo}$ $-\frac{1}{4^2} + \dots$ $x), 0 \le x \le \pi \text{ in } z$	to into a canor a. burier series. $= \frac{\pi^2}{12}$	nical form by a	an orthogo	nal reduction. (15 marks) (8 marks)
V. (a)	Redu Also (i) (ii)	$x^{2} = 8x^{2} + 7y^{2} + 3z^{2} - 1$ ind the nature of the Expand $f(x) = x - x^{2}$, $\frac{1}{1^{2}} - \frac{1}{2^{2}} + \frac{1}{3^{2}}$ Expand $f(x) = x(\pi - x^{2})$	Or $2xy - 8yz + 4xz$ quadratic form $-\pi \le x \le \pi \text{ in Fo}$ $-\frac{1}{4^2} + \dots$ $x), \ 0 \le x \le \pi \text{ in } z$ Or	to into a canor control of the series of t	nical form by a . Hence show ine series.	an orthogo that :	nal reduction. (15 marks) (8 marks) (7 marks)
	Redu Also (i)	$\frac{2}{2} = 8x^{2} + 7y^{2} + 3z^{2} - 1$ ind the nature of the Expand $f(x) = x - x^{2}$, $\frac{1}{1^{2}} - \frac{1}{2^{2}} + \frac{1}{3^{2}}$	Or $2xy - 8yz + 4xz$ quadratic form $-\pi \le x \le \pi \text{ in Fo}$ $-\frac{1}{4^2} + \dots$ $x), \ 0 \le x \le \pi \text{ in a}$ Or term and the coefficients	to into a canor courier series. $= \frac{\pi^2}{12}$ a Fourier cost efficients for	uical form by a Hence show ine series. the first sine	an orthogo that : and cosine	nal reduction. (15 marks) (8 marks) (7 marks)
V. (a)	Redu Also (i) (ii)	$x^{2} = 8x^{2} + 7y^{2} + 3z^{2} - 1$ ind the nature of the Expand $f(x) = x - x^{2}$, $\frac{1}{1^{2}} - \frac{1}{2^{2}} + \frac{1}{3^{2}}$ Expand $f(x) = x (\pi - x)$ Obtain the constant to Fourier series that response	Or 2xy - 8yz + 4xz quadratic form $-\pi \le x \le \pi$ in Fo $-\frac{1}{4^2} + \dots$ x), $0 \le x \le \pi$ in a Or term and the conservations of the second seco	tinto a canor courier series. $= \frac{\pi^2}{12}$ a Fourier cos efficients for riven in the f	ine series. the first sine ollowing table	an orthogo that : and cosine	nal reduction. (15 marks) (8 marks) (7 marks)
V. (a)	Redu Also (i) (ii)	$x = 8x^{2} + 7y^{2} + 3z^{2} - 1$ ind the nature of the Expand $f(x) = x - x^{2}$, $\frac{1}{1^{2}} - \frac{1}{2^{2}} + \frac{1}{3^{2}}$ Expand $f(x) = x(\pi - x)$ Obtain the constant to Fourier series that respectively.	Or 2xy - 8yz + 4xz quadratic form $-\pi \le x \le \pi$ in Fo $-\frac{1}{4^2} + \dots$ x), $0 \le x \le \pi$ in a Or term and the coef epresents y as g 0 2.0 3.0	to into a canor courier series. $= \frac{\pi^2}{12}$ a Fourier cost efficients for fiven in the f 4.0 5.0	the first sine ollowing table 6.0	an orthogo that : and cosine	nal reduction. (15 marks) (8 marks) (7 marks)
V. (a)	Redu Also (i) (ii)	$x = 8x^{2} + 7y^{2} + 3z^{2} - 1$ ind the nature of the Expand $f(x) = x - x^{2}$, $\frac{1}{1^{2}} - \frac{1}{2^{2}} + \frac{1}{3^{2}}$ Expand $f(x) = x(\pi - x^{2})$ Obtain the constant to Fourier series that respectively.	Or 2xy - 8yz + 4xz quadratic form $-\pi \le x \le \pi$ in Fo $-\frac{1}{4^2} + \dots$ x), $0 \le x \le \pi$ in a Or term and the coef epresents y as g 0 2.0 3.0	tinto a canor courier series. $= \frac{\pi^2}{12}$ a Fourier cos efficients for riven in the f	ine series. the first sine ollowing table	an orthogo that : and cosine	nal reduction. (15 marks) (8 marks) (7 marks) e terms in the
V. (a)	Redu Also (i) (ii)	$x = 8x^{2} + 7y^{2} + 3z^{2} - 1$ ind the nature of the Expand $f(x) = x - x^{2}$, $\frac{1}{1^{2}} - \frac{1}{2^{2}} + \frac{1}{3^{2}}$ Expand $f(x) = x(\pi - x)$ Obtain the constant to Fourier series that respectively. x = 0 1.0 $y = 9 18$	Or $2 xy - 8 yz + 4xz$ quadratic form $-\pi \le x \le \pi \text{ in Fo}$ $-\frac{1}{4^2} + \dots$ x), $0 \le x \le \pi \text{ in a}$ Or term and the coefficients y as g $0 2.0 3.0$ $3 24 28$	tinto a canor courier series. $= \frac{\pi^2}{12}$ a Fourier cost efficients for fiven in the f 4.0 5.0 26 20	ine series. the first sine collowing table 6.0 9	an orthogo that : and cosine	nal reduction. (15 marks) (8 marks) (7 marks) e terms in the (8 marks)
V. (a)	Redu Also (i) (ii) (i)	$x = 8x^{2} + 7y^{2} + 3z^{2} - 1$ ind the nature of the Expand $f(x) = x - x^{2}$, $\frac{1}{1^{2}} - \frac{1}{2^{2}} + \frac{1}{3^{2}}$ Expand $f(x) = x(\pi - x)$ Obtain the constant to Fourier series that respectively.	Or $2 xy - 8 yz + 4xz$ quadratic form $-\pi \le x \le \pi \text{ in Fo}$ $-\frac{1}{4^2} + \dots$ x), $0 \le x \le \pi \text{ in a}$ Or term and the coefficients y as g $0 2.0 3.0$ $3 24 28$	tinto a canor courier series. $= \frac{\pi^2}{12}$ a Fourier cost efficients for fiven in the f 4.0 5.0 26 20	ine series. the first sine collowing table 6.0 9	an orthogo that : and cosine e :—	nal reduction. (15 marks) (8 marks) (7 marks) e terms in the

?

2