(Pages: 3)

SIXTH SEMESTER B.TECH. (ENGINEERING) DEGREE **EXAMINATION, JUNE 2006**

CS 2K 603. GRAPH THEORY AND COMBINATOR

Time: Three Hours

Marks

Answer all questions.

Part A

- 1. (a) Discuss the Chinese postman problem.
 - (b) Define Hamiltonian graph and show that if a graph is Hamiltonian then $w(G-S) \leq |S|$, where w(X) denotes the number of components of X and |S| denotes the cardinality of S.
 - (c) Write Kruksal's algorithm.
 - (d) Show that every vertex other than degree one vertex of any tree is a cut vertex.
 - (e) Enumerate the number of ways of placing 20 indistinguishable balls into five boxes, where each box is non-empty and also find the number of integral solutions to $x_1 + x_2 + x_3 + x_4 + x_5 = 20 \text{ for } x_1 \ge 3, x_2 \ge 2, x_3 \ge 4, x_4 \ge 6 \text{ and } x_5 \ge 0.$
 - (f) If a chain letter is sent to 10 people in the first week of the year. The next week each person, who received a letter sends letters to 10 new people and so on, then find (i) how many people have received letters after 10 weeks; (ii) at the end of the year?
 - (g) Find the generating function for a_r = the number of ways of distributing r similar balls into nnumbered boxes, where each box is non-empty.
 - (h) Find the generating function of $\sum_{n=0}^{\infty} n^3 a^n X^n$.

 $(8 \times 5 = 40 \text{ marks})$

Part B

2. (a) (i) Show that for every K-vertex colour critical minimum vertex degree is K-1 at least.

(8 marks)

(ii) Find the chromatic polynomial of

(7 marks)

Show that if G is Eulerian then (1) each vertex is of even degree; and (2) edge set of G is partitioned into disjoint cycles.

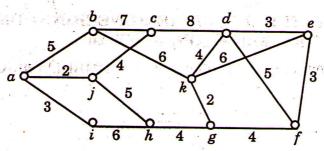
(10 marks)

(ii) State Kurtowski's theorem and write one application.

(5 marks)

Turn over

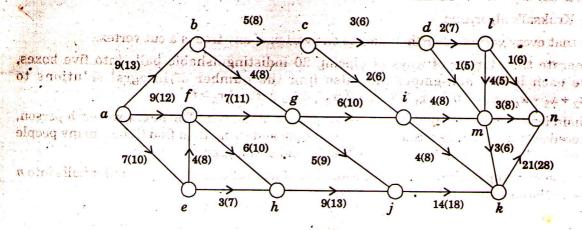
3. (a) Write Dijkstra's algorithm and implement the same from the vertex a of the following graph:—



(15 marks)

Or

(b) Write max-flow algorithm and implement the same to the following graph:—



(15 marks)

4. (a) (i) Count the number of integral solutions to $x_1 + x_2 + x_3 = 20$, where $2 \le x_1 \le 5$, $4 \le x_2 \le 7$ and $-2 \le x_3 \le 9$.

(8 marks)

- (ii) In how many ways can 10 people arrange themselves:
 - (1) In a row of 10 chairs?
 - (2) In a row of 7 chairs?
 - (3) In a circle of 10 chairs?

(7 marks)

Or

(b) (i) State and prove Binomial theorem.

(8 marks)

(ii) If |F| = 200, |R| = 50, |S| = 100, $|F \cap R| = 20$, $|F \cap S| = 60$, $|R \cap S| = 35$ and $|F \cap R \cap S| = 10$, then find $|F \cup R \cup S|$.

(7 marks)

iovo ir afl

(artuna T)

- 5. (a) (i) Solve the recurrence relation using generating function
 - (8 marks) (ii) Solve $a_n^2 - 2a_{n-1}^2 = 1$ for $n \ge 1$, where $a_0 = 2$. (7 marks)

- (b) (i) Solve $a_n 6a_{n-1} + 8a_{n-2} = n4^n$, where $a_0 = 8$ and $a_1 = 22$. (7 marks)
 - (ii) Solve $a_n a_{n-1} = n$ for $n \ge 1$ and $a_0 = 0$ using generating function. (8 marks)

 $[4 \times 15 = 60 \text{ marks}]$

C 20546