(Pages : 2)

Name EUUCA

Reg. No.

SEVENTH SEMESTER B.TECH. (ENGINEERING) DEGREE EXAMINATION, DECEMBER 2007

IC/AI/EC04 705 (F)—NUMERICAL ANALYSIS

Time: Three Hours

Maximum: 100 Marks

Answer all questions.

- 1. (a) Find the positive root of $x^3 2x 5 = 0$ by False position method.
 - (b) Find a positive root of $3x \sqrt{1 + \sin x} = 0$ by iteration method.
 - (c) Solve by Gauss-elimination method the following system :-

$$6x - y + z = 13$$

$$x + y + z = 9$$

$$10x + y - z = 19$$

(d) Solve the Gauss-Jordan method the following system of equations:

- (e) Prove that $\Delta = E 1 = \frac{1}{2} \partial^2 + \partial \sqrt{1 + \frac{\partial^2}{4}}$.
- (f) Evaluate $\int_{0}^{1} \frac{dx}{1+x^2}$ by Simpson's $\frac{1}{3}$ rule with h = 0.2.
- (g) Solve $\frac{dy}{dx} = x + y$ given y(1) = 0 and get y(1.1) and y(1.2) by Taylor series method.
- (h) Using Euler's method, solve numerically the equation y' = x + y y(0) = 1, for x = 0, 1.0 and 1.2, 1.4, 1.6, 1.8 and 2.0.

 $(8 \times 5 = 40 \text{ marks})$

2. (a) Find all the roots of $x^3 - 6x^2 + 11x - 6 = 0$ by Graefle's root squaring method.

Or

(b) Discuss the order of convergence of Newton's method. Also find a positive root of $3x - \cos x - 1 = 0$ by Newton's method correct to five decimal places.

Turn over

3. (a) Solve by Gauss-Jacobi method, the following system:

$$\begin{array}{rclrcr}
 x & + & y & + & 54z & = & 110 \\
 27x & + & 6y & - & z & = & 85 \\
 6x & + & 15y & + & 2z & = & 72
 \end{array}$$

- (b) Find the dominant eigenvalues for $A = \begin{bmatrix} 25 & 1 & 2 \\ 1 & 3 & 0 \\ 2 & 0 & -4 \end{bmatrix}$ by Power method.
- 4. (a) (i) Using Lagrange's interpolation formula find y (9.5) given:

$$x : 7 \quad 8 \quad 9 \quad 10$$

 $y : 3 \quad 1 \quad 1 \quad 2$

(ii) Find x when y = 13.5, the data given below using inverse Lagrange interpolation formula:

(b) Estimate the population increase during the period 1946 to 1976:

$$x$$
:
 1941
 1951
 1961
 1971
 1981
 1991

 y :
 20
 24
 29
 36
 46
 51

5. (a) Find y(0.1) y(0.2) y(0.3) from $\frac{dy}{dx} = xy + y^2$, y(0) = 1 by using RK-method and hence obtain y(0.4) using Adam's method.

Or

(b) Find u up to 5 seconds by taking h=1 given $\frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial t}$, u(0,t) = u(5,t) = 0 and $u(x,0) = x^2(25-x^2)$ using Bender-Schmidt formula. (4 × 15 = 60 marks)